DATA CENSORING WITH SET-MEMBERSHIP ALGORITHMS

Paulo S.R. Diniz¹ Hamed Yazdanpanah¹

¹Laboratório de Sinais, Multimídia e Telecomunicações (SMT) Departamento de Engenharia Eletrônica e de Computação (DEL) Universidade Federal do Rio de Janeiro (UFRJ)

{diniz, hamed.yazdanpanah}@smt.ufrj.br

IEEE Global Conference on Signal and Information Processing (GlobalSIP 2017)

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

(3) Compute proper $\overline{\gamma}$ to obtain the desired update rate

4 Results

Outline

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

 \bigcirc Compute proper $\overline{\gamma}$ to obtain the desired update rate

4 Results

$\operatorname{Content}$

Content

Data Censoring

- Apply set estimation theory to censor redundant data through:
 - 1. Single Threshold Set-Membership Normalized LMS (ST-SM-NLMS) algorithm
 - 2. Double Threshold Set-Membership Normalized LMS (DT-SM-NLMS) algorithm

Set Estimation Theory

- $\bullet\,$ Finds a solution to a given optimization problem \longrightarrow Any solution within the feasible set is acceptable
- Examples of estimators:
 - Batch processing: few techniques (usually too complex)
 - Iterative processing: optimal-bounding-ellipsoids (OBE) and set-membership (SM) algorithms

$\operatorname{Content}$

Content

Data Censoring

- Apply set estimation theory to censor redundant data through:
 - 1. Single Threshold Set-Membership Normalized LMS (ST-SM-NLMS) algorithm
 - 2. Double Threshold Set-Membership Normalized LMS (DT-SM-NLMS) algorithm

Set Estimation Theory

- $\bullet\,$ Finds a solution to a given optimization problem \longrightarrow Any solution within the feasible set is acceptable
- Examples of estimators:
 - Batch processing: few techniques (usually too complex)
 - Iterative processing: optimal-bounding-ellipsoids (OBE) and set-membership (SM) algorithms

Formulation

Main Sets

• Constraint set:

$$\mathcal{H}(k) \triangleq \left\{ \mathbf{w} \in \mathbb{R}^{N+1} : |d(k) - \mathbf{w}^T \mathbf{x}(k)| \le \overline{\gamma} \right\}$$

where

- Error: $e(k) \triangleq d(k) \mathbf{w}^T \mathbf{x}(k)$
- $\bullet\,$ Uncertainties are modeled through $\overline{\gamma}$
- Feasibility set \Rightarrow set of acceptable solutions

$$\Theta \triangleq \bigcap_{k \in \mathbb{N}} \mathcal{H}(k)$$

Problem Formulation

- Inputs: all data-pairs $(\mathbf{x}(k), d(k))$
- Target: find $\mathbf{w} \in \Theta$

Challenges

• Incomplete data

- Impossible to guarantee that all input data-pairs are available
- Online/iterative processing:
 - Must produce an estimate every time a new input data-pair arrives
 - Θ can be iteratively estimated via $\psi(k)$

$$\psi(k) \triangleq \bigcap_{i=0}^k \mathcal{H}(i)$$

- $\psi(k)$ converges to Θ as $k \to \infty$
- Problem: $k \to \infty \Rightarrow$ Infinite memory and prohibitive complexity
- Solution: Use the last constraint set at each iteration \longrightarrow SM-NLMS algorithm

Challenges

• Incomplete data

- Impossible to guarantee that all input data-pairs are available
- Online/iterative processing:
 - Must produce an estimate every time a new input data-pair arrives
 - Θ can be iteratively estimated via $\psi(k)$

$$\psi(k) \triangleq \bigcap_{i=0}^k \mathcal{H}(i)$$

- $\psi(k)$ converges to Θ as $k \to \infty$
- Problem: $k \to \infty \Rightarrow$ Infinite memory and prohibitive complexity
- Solution: Use the last constraint set at each iteration \longrightarrow SM-NLMS algorithm

Outline

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

 \bigcirc Compute proper $\overline{\gamma}$ to obtain the desired update rate

4 Results

Proposed algorithms

ST-SM-NLMS algorithm

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \frac{\mu(k)}{\|\mathbf{x}(k)\|^2 + \delta} e(k)\mathbf{x}(k),$$

where
$$\mu(k) \triangleq \begin{cases} 1 - \frac{\overline{\gamma}}{|e(k)|} & \text{if } |e(k)| > \overline{\gamma}, \\ 0 & \text{otherwise} \end{cases}.$$

DT-SM-NLMS algorithm

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \frac{\mu(k)}{\|\mathbf{x}(k)\|^2 + \delta} e(k)\mathbf{x}(k),$$

where
$$\mu(k) \triangleq \begin{cases} 1 - \frac{\overline{\gamma}}{|e(k)|} & \text{if } \overline{\gamma} < |e(k)| < \overline{\gamma}', \\ 0 & \text{otherwise} \end{cases}$$

Proposed algorithms

ST-SM-NLMS algorithm

$$\mathbf{v}(k+1) = \mathbf{w}(k) + \frac{\mu(k)}{\|\mathbf{x}(k)\|^2 + \delta} e(k)\mathbf{x}(k),$$

where
$$\mu(k) \triangleq \begin{cases} 1 - \frac{\overline{\gamma}}{|e(k)|} & \text{if } |e(k)| > \overline{\gamma}, \\ 0 & \text{otherwise} \end{cases}.$$

DT-SM-NLMS algorithm

$$\mathbf{v}(k+1) = \mathbf{w}(k) + \frac{\mu(k)}{\|\mathbf{x}(k)\|^2 + \delta} e(k)\mathbf{x}(k),$$

where
$$\mu(k) \triangleq \begin{cases} 1 - \frac{\overline{\gamma}}{|e(k)|} & \text{if } \overline{\gamma} < |e(k)| < \overline{\gamma}',\\ 0 & \text{otherwise} \end{cases}$$

٠

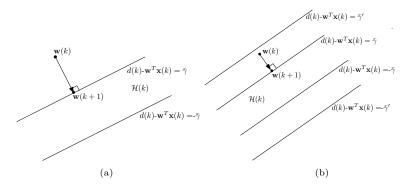


Figure: Coefficient vector updating for: (a) ST-SM-NLMS; (b) DT-SM-NLMS.

Outline

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

(3) Compute proper $\overline{\gamma}$ to obtain the desired update rate

4 Results

6 Conclusions

• What we want?

Find the proper γ to achieve the desired update rate p (censor 100(1-p)% of data)
 How?

• Calculate $\overline{\gamma}$ such that $\mathbb{P}[|e(k)| > \overline{\gamma}] = p$

• What is the distribution of e(k)?

• Adaptive system has sufficient order $\Rightarrow e(k) \stackrel{d}{\sim} n(k)$ in the steady-state

• Assume $n(k) \stackrel{d}{\sim} \mathcal{N}(0, \sigma_n^2) \Rightarrow e(k) \stackrel{d}{\sim} \mathcal{N}(\mathbb{E}[\tilde{e}(k)], \sigma_n^2 + \mathbb{E}[\tilde{e}^2(k)])$, where

$$\mathbb{E}[\tilde{e}^2(k)] = \frac{(\sigma_n^2 + \overline{\gamma}^2 - 2\overline{\gamma}\sigma_n^2\rho_0(k))p}{[(2-p) - 2(1-p)\overline{\gamma}\rho_o(k)]},$$

$$\rho_0(k) = \sqrt{\frac{2}{\pi(2\sigma_n^2 + \overline{\gamma}^2)}}.$$

• What we want?

Find the proper γ to achieve the desired update rate p (censor 100(1-p)% of data)
How?

• Calculate $\overline{\gamma}$ such that $\mathbb{P}[|e(k)| > \overline{\gamma}] = p$

• What is the distribution of e(k)?

- Adaptive system has sufficient order $\Rightarrow e(k) \stackrel{d}{\sim} n(k)$ in the steady-state
- Assume $n(k) \stackrel{d}{\sim} \mathcal{N}(0, \sigma_n^2) \Rightarrow e(k) \stackrel{d}{\sim} \mathcal{N}(\mathbb{E}[\tilde{e}(k)], \sigma_n^2 + \mathbb{E}[\tilde{e}^2(k)])$, where

$$\mathbb{E}[\tilde{e}^2(k)] = \frac{(\sigma_n^2 + \overline{\gamma}^2 - 2\overline{\gamma}\sigma_n^2\rho_0(k))p}{[(2-p) - 2(1-p)\overline{\gamma}\rho_o(k)]},$$

$$\rho_0(k) = \sqrt{\frac{2}{\pi (2\sigma_n^2 + \overline{\gamma}^2)}}.$$

• What we want?

Find the proper γ to achieve the desired update rate p (censor 100(1-p)% of data)
How?

- Calculate $\overline{\gamma}$ such that $\mathbb{P}[|e(k)| > \overline{\gamma}] = p$
- What is the distribution of e(k)?
 - Adaptive system has sufficient order $\Rightarrow e(k) \stackrel{d}{\sim} n(k)$ in the steady-state

• Assume $n(k) \stackrel{d}{\sim} \mathcal{N}(0, \sigma_n^2) \Rightarrow e(k) \stackrel{d}{\sim} \mathcal{N}(\mathbb{E}[\tilde{e}(k)], \sigma_n^2 + \mathbb{E}[\tilde{e}^2(k)])$, where

$$\mathbb{E}[\tilde{e}^2(k)] = \frac{(\sigma_n^2 + \overline{\gamma}^2 - 2\overline{\gamma}\sigma_n^2\rho_0(k))p}{[(2-p) - 2(1-p)\overline{\gamma}\rho_o(k)]},$$

$$\rho_0(k) = \sqrt{\frac{2}{\pi(2\sigma_n^2 + \overline{\gamma}^2)}}.$$

• What we want?

Find the proper γ to achieve the desired update rate p (censor 100(1-p)% of data)
How?

- $\bullet \ \mbox{Calculate } \overline{\gamma} \mbox{ such that } \mathbb{P}[|e(k)| > \overline{\gamma}] = p$
- What is the distribution of e(k)?
 - Adaptive system has sufficient order $\Rightarrow e(k) \stackrel{d}{\sim} n(k)$ in the steady-state
- Assume $n(k) \stackrel{d}{\sim} \mathcal{N}(0, \sigma_n^2) \Rightarrow e(k) \stackrel{d}{\sim} \mathcal{N}(\mathbb{E}[\tilde{e}(k)], \sigma_n^2 + \mathbb{E}[\tilde{e}^2(k)])$, where

$$\mathbb{E}[\tilde{e}^2(k)] = \frac{(\sigma_n^2 + \overline{\gamma}^2 - 2\overline{\gamma}\sigma_n^2\rho_0(k))p}{[(2-p) - 2(1-p)\overline{\gamma}\rho_o(k)]},$$

$$\rho_0(k) = \sqrt{\frac{2}{\pi(2\sigma_n^2 + \overline{\gamma}^2)}}.$$

How to determine $\overline{\gamma}$?

• Step 1: choose $\overline{\gamma}$ such that

$$\int_{\overline{\gamma}}^{\infty} \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp(-\frac{r^2}{2\sigma_n^2}) dr = \frac{p}{2};$$

- Step 2: compute $\mathbb{E}[\tilde{e}^2(k)]$ and put $\sigma_e^2 \triangleq \mathbb{E}[\tilde{e}^2(k)] + \sigma_n^2$;
- Step 3: choose $\overline{\gamma}$ such that

$$\int_{\overline{\gamma}}^{\infty} \frac{1}{\sqrt{2\pi\sigma_e^2}} \exp(-\frac{r^2}{2\sigma_e^2}) dr = \frac{p}{2}$$

and repeat from step 2.

Observation: in practice, we do not need repeat this algorithm more than three iterations, since the difference between two consecutive $\overline{\gamma}$ s becomes insignificant.

Outline

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

 \bigcirc Compute proper $\overline{\gamma}$ to obtain the desired update rate

Scenario I: system identification

- Algorithms tested: NLMS, AC-LMS, ST-SM-NLMS algorithms;
- Input signals: BPSK, zero-mean white Gaussian noise with unit variance (WGN), AR(1) (first-order autoregressive);
- Filter order: N = 29;
- $\mathbf{w}(0) = [0, \cdots, 0]^T;$
- SNR: 20 dB;
- Regularization factor: $\delta = 10^{-12}$;
- Desired update rates, p: 0.1, 0.2, and 0.03;
- Step size: 0.9 and 0.004 for the NLMS and AC-LMS algorithms, respectively;
- AC-LMS censorship threshold: 1.7 (experimentally for 10% update rate);
- For p = 0.1, 0.2, 0.3 the estimated $\overline{\gamma} = 0.1875, 0.1477, 0.1194$, respectively.

Learning (MSE) curves

• For p = 0.1, $\overline{\gamma}$ is estimated as $\overline{\gamma} = 0.1875$.

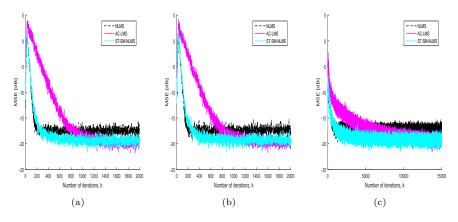


Figure: (a) BPSK; (b) WGN; (c) AR(1).

Update rates of the ST-SM-NLMS algorithm

Input signal	p = 0.1	p = 0.2	p = 0.3
BPSK	0.087	0.186	0.298
WGN	0.090	0.189	0.299
AR(1)	0.099	0.202	0.305

Table: The results of update rates using the estimated $\overline{\gamma}s$ for the ST-SM-NLMS algorithm.

- When p = 0.1, the update rates of the AC-LMS algorithm for BPSK, WGN, AR(1) input signals are 10.9%, 10.9%, 15.7%, respectively.
- In [13, Galdino et al.], $\overline{\gamma}$ is estimated by $\overline{\gamma} \triangleq \operatorname{erfc}^{-1}(p)\sqrt{2(M+1)}\sigma_n = 0.1655$, when p = 0.1. In this case, the update rates of the ST-SM-NLMS algorithm for BPSK, WGN, AR(1) input signals are 13.4%, 13.5%, 14.6%, respectively.
- Observation: the second column of Table shows that our estimation of $\overline{\gamma}$ censors the data with more precision.

Scenario II: System Identification with the existence of an outlier signal

- Algorithms tested: NLMS, rAC-LMS, ST-SM-NLMS, DT-SM-NLMS algorithms;
- Input signals: BPSK, zero-mean white Gaussian noise with unit variance (WGN), AR(1) (first-order autoregressive);
- Filter order: N = 29;
- $\mathbf{w}(0) = [0, \cdots, 0]^T;$
- SNR: 20 dB;
- Regularization factor: $\delta = 10^{-12}$;
- Desired update rates, *p*: 0.1, 0.2, and 0.03;
- Step size: 0.9 and 0.004 for the NLMS and rAC-LMS algorithms, respectively;
- rAC-LMS censorship thresholds: 3 and 10 (experimentally for 10% update rate);
- For p = 0.1, 0.2, 0.3 the estimated $\overline{\gamma} = 0.1875, 0.1477, 0.1194$, respectively;
- The second threshold for DT-SM-NLMS algorithm: $\overline{\gamma}' = 1$;
- Outlier signal: Bernoulli process takes 1 with probability 0.05, multiplying $\mathcal{U}(0, 50)$.

Misalignment curves

• For p = 0.1, $\overline{\gamma}' = 1$ and $\overline{\gamma}$ is estimated as $\overline{\gamma} = 0.1875$.

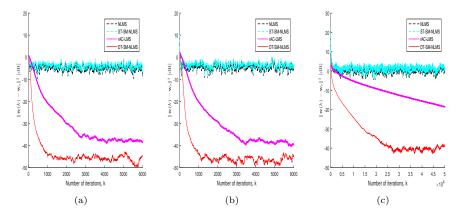


Figure: (a) BPSK; (b) WGN; (c) AR(1).

Update rates of the DT-SM-NLMS algorithm

Table: The results of update rates using the estimated $\overline{\gamma}$ s for the DT-SM-NLMS algorithm.

Input signal	p = 0.1	p = 0.2	p = 0.3
BPSK	0.090	0.188	0.292
WGN	0.091	0.190	0.293
AR(1)	0.099	0.196	0.299

• When p = 0.1, the update rates of the rAC-LMS algorithm for BPSK, WGN, AR(1) input signals are 10.2%, 10.2%, 12.3%, respectively.

Outline

2 ST-SM-NLMS and DT-SM-NLMS Algorithms

 \bigcirc Compute proper $\overline{\gamma}$ to obtain the desired update rate

Conclusions

• In this presentation:

- Revisited set estimation theory with emphasis on set-membership filtering
- Revisited single threshold set-membership NLMS algorithm to censor the data
- Proposed double threshold set-membership NLMS algorithm to censor redundant data and non-innovative data caused by outlier
- Estimated the suitable threshold parameter for the desired update rate
- By using the estimated threshold, the proposed algorithms censor the data effectively
- The proposed algorithms have better performance compared to the NLMS, AC-LMS, and rAC-LMS algorithms
- Corroborated the effectiveness of set-membership filtering in data censorship

Thank You!

