

Fast Near Infrared Fusion-Based Adaptive Enhancement of Visible Images

By Ahmed Elliethy and Hussein A. Aly

Outline

- Introduction
- Previous Visible & Near-Infrared Fusion Approaches
- Proposed Fast Adaptive Fusion Approach
- Complexity analysis
- Experimental Results
- Conclusion

Visible (VS) Band

(NIR)

- Haze, mist, fog, overwhelming/poor lighting

Near Infra-red (NIR) Band

- $\begin{array}{c} \mbox{Visible light} \\ \mbox{Ultraviolet} & \mbox{Near-infrared} & \mbox{Infrared} \\ \mbox{Captures } \lambda \in [650, 1650] \ \mbox{nm} \\ \mbox{Properties:} & \mbox{Wavelength } 800 \ \mbox{nm} \\ \end{array}$
 - + Propagate well in challenging imaging conditions
 - Material dependent, so some details about objects made from the same material may be lost.

Why VS & NIR Fusion?

• VS and NIR can capture complementary spectral radiations

Why VS & NIR Fusion?

- VS and NIR can capture complementary spectral radiations
- Fusion exploits the complementary details provided by VS and NIR images in order to
 - Enhance VS image
 - Image de-hazing

Outline

- Introduction
- Previous Visible & Near-Infrared Fusion Approaches
- Proposed Fast Adaptive Fusion Approach
- Complexity analysis
- Experimental Results
- Conclusion

Previous VS-NIR Fusion Approaches (1)

1st **approach:** replace either a color plane or the luminance plane of the VS image with the NIR one [1]

Drawback: VS image degraded when NIR image suffers from details loss in some areas.

Previous VS-NIR Fusion Approaches (2)

2st approach: alter the pixel values of NIR to match the luminance plane of the VS image while preserving the local contrast of the NIR image[2].

Better result but VS image still degraded when NIR image suffers from details loss in some areas.

Outline

- Introduction
- Previous Visible & Near-Infrared Fusion Approaches
- Proposed Fast Adaptive Fusion Approach
- Complexity analysis
- Experimental Results
- Conclusion

Proposed Fast VS-NIR Fusion Approach

- We propose a fast VS-NIR fusion approach to achieve better VS image enhancement.
- Key features
 - Spatial details which are only apparent in NIR and lost in VS should be incorporated into the fused image.
 - The spectral contents (colors) of VS should be preserved after fusion.

Block Diagram

(1) Local Contrast Estimation

• Inspired by [3], our local contrast is defined as $LC(I(\mathbf{x})) = \alpha \left(\max_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})} I(\mathbf{x}') - \min_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})} I(\mathbf{x}') \right) + \left(1 - \alpha \right) \left(\max_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})} \| \nabla I(\mathbf{x}) \| \right),$

(2) Spatial details exctraction from NIR

 High pass filter is designed to extract the higher frequency contents (spatial details) of NIR

(3) Fusion Map Estimation

 Fusion map determines the regions that suffer from missing spatial details in VS compared to NIR

$$F(\mathbf{x}) = \frac{\max\left(0, LC\left(I^{\text{NIR}}\left(\mathbf{x}\right)\right) - LC\left(Y^{\text{RGB}}\left(\mathbf{x}\right)\right)\right)}{LC\left(I^{\text{NIR}}\left(\mathbf{x}\right)\right)}$$

(4) VS-NIR Fusion

- Given
 - Estimated fusion map

(4) VS-NIR Fusion

- Given
 - Estimated fusion map
 - Extracted spatial details from NIR

(4) VS-NIR Fusion

Given

, J^{RGB}

- Estimated fusion map
- Extracted spatial details from NIR
- Fused image is generated as

$$J^{\text{RGB}}(\mathbf{x}) = I^{\text{RGB}}(\mathbf{x}) + F(\mathbf{x}) \left(g * I^{\text{NIR}}\right) (\mathbf{x})$$

RGB

Outline

- Introduction
- Previous Visible & Near-Infrared Fusion Approaches
- Proposed Fast Adaptive Fusion Approach
- Complexity analysis
- Experimental Results
- Conclusion

Complexity Analysis

 Proposed algorithm is non iterative and has low computational complexity

Operation	Add/sub (A)	Mult/div (M)	Comparison (C)
Local contrast estimation	9	10	3 <i>S</i> ²
Fusion map estimation	1	1	1
Fused image generation	$k^2 + 3$	$k^2 + 1$	0

$$C(n) = n \left(A \left(k^2 + 13 \right) + M \left(k^2 + 12 \right) + C \left(3S^2 + 1 \right) \right)$$

= $O(n).$

Outline

- Introduction
- Previous Visible & Near-Infrared Fusion Approaches
- Proposed Fast Adaptive Fusion Approach
- Complexity analysis
- Experimental Results
- Conclusion

Dataset [1]

- 477 pairs of VS-NIR images organized into 9 categories.
- The images were captured using a modified SLR camera by using an IR-block or IR-pass filter in front of the camera's lens.
- Example

Methods Under Comparison

- We compare the proposed approach with
 - Luminance plane replacement approach [1]
 - Contrast-preserving mapping approach [2]
- Approaches are compared visually. Images shown next are
 - -VS
 - -NIR
 - Fused image using [1]
 - Fused image using [2]
 - Fusion map
 - Fused image using proposed approach

Example 1

Fused image using [1]

Fused image using [2]

Fusion map

Fused image using prposed approach

Example 2

(VS)

(NIR)

Fused image using [1]

Fused image using [2]

Fusion map

Fused image using prposed approach

Example 3

(VS)

(NIR)

Fused image using [1]

Fused image using [2]

Fused image using prposed approach

Fusion map

Example 4

(VS)

(NIR)

Fused image using [1]

Fused image using [2]

Fused image using prposed approach

Fusion map

Conclusion

- We propose a fast, non-iterative VS-NIR fusion approach to achieve adaptive VS enhancement
- Key advantages
 - Adaptively prevents unnecessary boosting of spatial details
 - Only **spatial details apparent** in NIR and **lost** in VS are incorporated into the fused image.
 - Preserve spectral contents (colors) of VS after fusion.
 - Fast and low computational complexity
 - Perform fusion of 682×1024 image pair in 0.7 sec.
 - Suitable for embeded hardware implementation

References

- [1] C. Fredembach and S. Süsstrunk, "Colouring the near-infrared," *Color and Imaging Conference*, vol. 2008, no. 1, pp. 176 182, 2008.
- [2] C. H. Son, X. P. Zhang, and K. Lee, "Near-infrared coloring via a contrast-preserving mapping model," in *IEEE Global Conf. on Signal and Information Proc.* (GlobalSIP), Dec 2015, pp. 677–681.