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Introduction

e Network Topology is used to model a cognitive process based on:

e Differences in network topology are due to:

Prior information

Statistical analysis of measured signals

Multiple Comparison Problem — Errors in 1%t level analysis

Anatomical, functional, or measurement factors

Age, Gender, Disease (Brain damage, Stroke, Brain lesions)
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DCM

® Dynamic causal modeling (DCM)
® Estimate the coupling among brain regions

® Determine how subject responses to experimental changes

affect that coupling

© Inferring model connectivity using Bayes Thereom:

. P(DIM)P(M
P(M|D) = (D] )- (M)
P(D)
, Likelihood * Prior
Posterior =

Evidence




DCM for fMRI
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DCM as a cognitive phenotyping tool

® The number of nodes from the first-level analysis can be

informative of neuro-cognitive deficits (Cabeza et al. 2002)

® Other diseases (ie. schizophrenia) are thought to be related

to connectivity or other parameters of the generative DCM

model (Wagner et al. 2013)
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Research Problem

® Given a group of n subjects S, S,, ... S ,the problem is to
find the best DCM (M,, M,,M ) that represents each subject

e We want to be able to compute an evidence matrix where
every entry in the matrix represents the evidence that a

certain model M_ tits a certain subject Sy

s, Is, |...|s,
L Bayes Factor: —_ P(D|M,)
M, |085]077 |... |0.66 P(D|M,)
M, |072 091 |.. 093 o o
® Missing node = no activation detected from
ROI = Evidence cannot be computed.
M 054 10.63 |... 0.89

® /ero evidence assumption can be

problematic.




Dealing with Missing Nodes by
tweaking the p-value

Random noise...
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Objectives

* Develop approach(es)to estimate the time courses associated with
missing regions as a preprocessing step.

° Analyze the effect of the estimation schemes on:
® (Classification of subjects based on model evidence

° Ranking of subjects

® Compare usage of estimation scheme with traditional methods
* Using a more relaxed p—value

° Excluding regions/ subjects.

e Validation using real datasets.
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Estimation Methods

® Zero-Filling
* Noise-Filling (analogous to using high-p-value)
* Average-Filling

® Expectation Maximization




Real Datasets

Simon Task Dataset
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fMRI preprocessing using SPM

© Realignment of functional images to remove motion artifacts

® Slice-timing correction i A B

By members & collaborators of the Wellcome Trust Centre for Neuroimaging

L Co—registration

[B SPMS (shaza): Graphi (2]

File Edit View Insert Tools Desktop Window SPM Figure Help

® Between sessions/ subjects

* Segmentation of structural image using

default tissue probability maps as priors
® Registration with prior tissue probability
maps from segmentation

° Spatial normalization
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® Smoothing (8 mm kernel)
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- fMRI model specification and

statistical analysis

° Categorical responses were modeled using the

Statistical analysis: Design

stimulus onset times and movement

parameters from realignment
e Conditions were specified for each dataset

e Estimation of the GLM parameters was done
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using a Bayesian approach (using a VB

algorithm)
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e Contrast vectors were applied to the results to

produce statistical parametric maps (SPMs)




Methods

VB were used for the estimation of the parameters for each
DCM.

RMSE measured the difference between the computed
parameters before and after estimation of missing data.
(between the SPM computed parameters with the full data,
and the computed SPM parameters vector after estimating

the missing data)

1 . )
6 = {A,B,C, h) RMSE = Jﬁztje —g)?

Mutual Information was Computed between the initial BOLD
signal and the estimated BOLD signal after missing data

estimation ol A} S
' i " p(x,y)
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e VOI time series from the datasets were based on centers of
peak activation (8mm sphere). Node signal=1* eigenvariate

of VOI.
® 4 nodes were considered for each Go/No-Go subject and 3
nodes for each Simon subject.
® P-value was tweaked to force nodes to drop
® Any extra nodes were ignored for all subjects
® Missing nodes were estimated
® Estimation of parameters for all subjects using VB

e EM-substitution vs. mean-substitution vs. zero-substitution

MI increases, RMSE decreases




Comparison of RMSE and Ml
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4 N
Comparing the different models by specifying

alternative models for Go-No/Go Dataset

e Fixed Effects Analysis e Random Effects Analysis

Bayesian Model Selection Bayesian Model Selection
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e

Bayesian model averaging over all 16
models for Go-No/Go dataset
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-Inding nodes using a less conservative
0-value

o Explore whether the evidence is higher for an EM estimated
missing node or increasing the p—Value until a noise point

eventually emerges nearby

® For the Go/No-Go Task Dataset a p-value of 0.001 was set
® 8/21 total subjects had 1 or more missing nodes.

® The p-value was increased in increments of 0.005 up to 0.1

Family—wise corrected.
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-Inding nodes using a less conservative

n-value

® Black bars are for
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Conclusions

® Missing data approaches can be used as a prior step in DCM
to compute missing nodes.

e EM yields the highest classification accuracy using a Simple
loss function and highest model evidence for various dataset
sizes and varying numbers of model choice.

® In real data, computation of missing nodes and model
evidence was possible in 100% of subjects compared to 62%
and 48% if no preprocessing was performed.

® The ability to compute the model evidence for all cases
improves the ranking of subjects and Bayesian model
averaging.
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