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Dimensionality 
reduction

Large-scale regression tasks

Motivation
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Graph representations

 Inference goal: Estimate values/labels defined over nodes

Real networks Data similarities

 Challenge: Obtaining observations often difficult/costly
 Privacy issues, battery consumption, human annotators and other

Classification on Graphs

 Semi-supervised classification (on graphs) 
 Set               of labeled nodes is given
 Labels of                       are to be inferred

 Graph 
 Weighted adjacency matrix
 Node      has label    

 Topology (un)known
 Given (in e.g. WSNs and social nets)
 Identified via nodal similarities 

 Approximation of marginal posteriors:

Semi-supervised learning with GMRFs
 Labels modeled as a Markov Random Field (smoothness over graph)

 Unknown (discrete) labels approximated by (continuous) Gaussian field (GMRF)

 Conditional mean:

 Predictor of unknown labels via GMRF mean:

Computing marginal posteriors                 is NP-hard 

Active Sampling on GMRFs 
 Greedy selection of most “informative” node

 GMRF mean update (                  )   

 Update Laplacian inverse                      when k-th node is removed  

 complexity

Key Active Sampling issue: How do we select                 ?   

Related work
 Non-adaptive approaches

 Error upper bound minimization [Gu-Han‘12]
 GMRF variance minimization [Ji-Han‘12] 
 Σ-optimal design [Ma, Garnett, Schneider’13]

 Adaptive approaches
 Expected error (EER) minimization [Zhu et al’03]
 EER with two-step approximation [Jun-Nowak‘16]
 Information gain maximization [Long et al‘08]
 Class boundary search [Ortega ‘16], [Zapella ‘13]

Expected model change (ECM))

 Expected number of prediction changes (“flips”)

 Aggregated mutual information

 Our method: Sample node expected to inflict the largest change on label model
 Intuition: Take larger steps to arrive faster at a “good’’ model
 Various measures of change considered

Scalable with number of 
unlabeled nodes and
classes? 

EMC without retraining
 Total variation (TV) between p(x) and q(x) :

 Expected sum of total variations score function

 Expected mean-square deviation (MSD) of Gaussian field yields

 TV- and MSD-based utility functions available without model retraining
 Significantly faster especially for large-scale graphs

 Sum of total variations over marginal posteriors of unlabeled  (                       )

Sampling bias reduction
 Bias due to averaging over available (possibly flawed) model

 Possible remedies
Combine w/ random sampling:

Max-min change:

 Our approach: Use a convex combination between prior and model 

 Example: Total variation measure 

 Use sequence               where               as model improves

Synthetic experiments- Rectangular grid

Real datasets 

Ionosphere Australian

 Graph connectivity using Pearson correlation  

Weighted adjacency matrix entries:

ParkinsonsEcoli
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