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ABSTRACT PROBLEM DEFINITIONS EXPERIMENTAL RESULTS
Continuous, real-time bit error ratio (BER) test of modern communication and storage When a priori knowledge does not necessarily include a priori observations, what con- We report running time results, collected on an implementation using Python 2.7.11 (with
channels is a ubiquitous problem: the noises tend to vary in space and time, and are diffi-  sists of a reasonable reconstruction of f®(9)? Numpy library) executed on a PC with Core i7-3770 CPU running at 3.4GHz. In order to
cult to fully characterize offline. Traditional method requires time consuming accumula- It is well known that the a priori PDF for a Bernoulli likelihood is a Beta distribution compare our results with the prior work [1], we mimic its test conditions of 1x10° new ob-

tion of samples for which Bayesian method has shown its promise in alleviating by incor-  which, with the knowledge of its mode (m), could be expressed as below: servations for each test at an a priori BER of 5.8x107"° and exact BER of 5.42x107"°.

porating a priori knowledge. However, the method has so far depended on a simplistic
Running Time Results

linear search algorithm that suffers from long running time which defeats the purpose of (a—1 \
sample reduction. We reveal the existence of a convex solution space for the problem I -2 (a-1)(1-m) Alg \ Bit Rate 2.5Gb/s 5.0Gb/s 8.0Gb/s
: : : : . \. m ) a-1
generally thought to be non-convex. This results in an improved performance by orders fo (9, a, m) = — —-0 -(1— 9) m
of magnitude. M(a)-T (a-1)1-m) . New Observations |  0.4s 0.25 0.125s
m
INTRODUCTION Standard Search Time 948.6s 948.6s 948.6s
Consider G, a Bernoulli RV (Random Variable) of a yield 8 or the probability of success: "a” Is unknown BMF-BD [9]
How is it determined? Monte Carlo 2.9s 1.5s 0.9s
6 = P(G = success) 7

Sample Savings

If we estimate 8 with a finite Fang et al. [1] proposed
a=argmax f, (X, a; N, m) finding “a@” by maximizing

number of Bernoulli trials . .
N A the “evidence function’

= I
feRV O 6 itself becomes a RV This amounts to the maximization
of the following objective function e Figure a) shows the trend for the derivative of Digamma that decreases monotonically

Total Savings

Knowing a particular 8, the "Likelihood” of x successes out of 7 Bernoulli trials is given . . . .
. el s without changing polarity. Therefore, it is convex.
by the binomial distribution as below:

e It follows in Figure c) that the second derivative for the numerator g, (a) and the de-

£ A _ _ nominator g, (a) of our new objective function are also convex.
Ny o« n—x (a-1 ) (a—1)1—m) . | | o
fx\@ (X|9; n) = G (1— 6’) B -2 F(x + a)- [l n— XA | e Figure d) shows that the two functions may still meet at a common point a leading to a
Conversely, X f, (X 2N m) _ \ M / , . m . change in polarity of the second derivative and results in non-convexity.
- N (4 —1)1 — ] ( _ h . L . " . L '
\),(Vlzlnlc(:ln;:v:)nut F(a)-F (a 1)(1 m) 1 l n 4 a-1 9 e Figure b) shows maximization by finding the root a for the first derivative g (a) Prior art provides only sample savings The proposed method provides
- m - U L both le and ti |
unknown & i | | x o (a) - |n[f (X o m)] oth sample and time savings
OLe (X, n) = dal'g gnax fx‘(g (X|(9, n) = H The Objective Function !! gla)= X\ @y 1 CONCLUS|ONS
We prove Solution space e Bayesian method achieves high accuracy with small sample sizes by leveraging on a
vaximum Likelihood !Estlmate (MLE) s well known but t.here 'S one caveat: The objective function is generally considered non-convex and linear search is thus used S s convex 1! priori knowledge
An accurate estimate demands a large n when 6 is extremely small for solving it. However, for low BER such as 70 %, the search space for “a” is in the or- I . B a* . . . .
3 | o abs (a)da > abs (a)da e \We prove that the key objective function has a convex solution space regardless of the
der of 70 "~ and long search time becomes inevitable. , S = , S Sossible to function being generally non-convex
. ] ] . . . _ . . . ? - o —
T.o avoid pote'ntlglly the If)lng delay for acc.umulatlng a large number of samples, we con- Is it possible to shorten the search time for real-time applications* solve with « We demonstrated a negligible search time and 17x sample savings by replacing the
sider the & priori probability density function (PDF) £ (6) Newton- linear search at the core of the Bayesian method with Newton-Raphson algorithm
By Bayesian method, the a priori PDF is fused with new observations, leading to the a | | Raph
g y : . P ° PROPOSED METHOD global maxima global maxima ApHSon
posteriori PDF: s REFERENCES
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