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MOTIVATION

• Changes in blood vessels occur
with many pathologies

• Retina imaging through digital 
fundus camera allow a non-
invasive access to the vessels

• Changes on the arteries are 
different from those on the veins
according to the pathologies



MOTIVATION

• One measure used to track these vessel
changes is the arterio-venous diameter
ratio.

• Calculated only around the optic disc

• It is correlated with risk of coronary 
artery disease, hypertension, cholesterol 
level, progression of retinopathy and 
smoking [1].

Could a global measure be more 
indicative of vessel changes?

[1] R.Klein, B.K.Klein, and S.E.Moss, “The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: Xix: the Wisconsin epidemiologic 
study of diabetic retinopathy,” Archives of Ophthalmology, vol. 122, no. 1, pp. 76–83, 2004.



STATE OF THE ART

• Mainly machine learning techniques with color, intensity
features locally classify pixels into arteries/veins

• … followed by a graph-based method that improve pixel 
classification using global topology rules of the vascular
tree [1,2]

 no deep learning methods to date

[1] B. Dashtbozorg, A. M. Mendona, and A. Campilho, “An automatic graph-based approach for artery/vein classification in retinal images,” IEEE Transactions on Image 
Processing, vol. 23, no. 3, pp. 1073–1083, 2014.
[2] R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Transactions on 
Medical Imaging, vol. 34, no. 12, pp. 2518–2534, Dec 2015.



SUMMARY OF THE METHODOLOGY
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DATASET ANNOTATION

• Publicly available dataset
• For example, DRIVE:20 

training images

• Label Annotation Tool



CNN MODEL

• Central pre-segmented vessels pixel in the patch is classified as 
artery or vein

• 4 Convolutional Layers
• ADAM stochastic gradient descent

• Six channels input (3 RGB channels + 3 RGB normalized
channels)



TRAINING STRATEGIES

• 6 channels input : 
Normalized channels

• Data augmentation: Rotation 
and PCA augmentation
 For medical application: have to 
be the most realistic𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

𝐼𝐼 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼
𝜎𝜎𝐼𝐼

∗ 𝜎𝜎0 + 128



LIKELIHOOD SCORE PROPAGATION

• Graph-based method that
propagates initial CNN labeling
through the vasculature
 use of global topology of the 
retinal vessels network

• Every branch (nodes) is connected
to all the branches. the edge is
connected to the cost (position and 
label cost)
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LIKELIHOOD SCORE PROPAGATION

• For efficiency, the graph is simplified into
its minimal spanning tree

• Traversing the tree twice to propagate
the scores

• First each child give its label attenuated by 
the position cost

• Then each parent gives the remaining label 
propagation to its children
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DATA AND PARAMETERS

PROVIDING AN EDUCATION WITHOUT BORDERS
• Training data

• 20 images from DRIVE
• 70 images from MESSIDOR
• = 1 500 000 128x128 patches
• 10% training data as validation set

• Test data 
• 2 ground truth set for the 20 test images of DRIVE (centerline CT-DRIVE 

and all pixels ALL-DRIVE)
• 30 images from MESSIDOR

• Each training stopped after 50 epochs
• Empirical strategy to select the model



RESULTS

PROVIDING AN EDUCATION WITHOUT BORDERS
• Better results than the 
state of the art

• Still need a graph 
propagation as CNN 
labeling remains local

• LSP improve the most
on smallest vessels

*TE = Topology Estimation [1]; *GTR = Graph Topology Rules [2]

[1] R. Estrada et al., “Retinal artery-vein classification via topology estimation,” IEEE Transactions on Medical Imaging, 2015. 
[2] B. Dashtbozorg et al., “An automatic graph-based approach for artery/vein classification in retinal images,” IEEE Transactions on Image Processing, 2014.
[3] M. Niemeijer et al., “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans Med Imaging, 2011



RESULTS

PROVIDING AN EDUCATION WITHOUT BORDERS• Results

• ROC curves
• 6D input > 3D input
• LSP can propagate errors

as well
 best improvement near
the error equal rate



CONCLUSION

PROVIDING AN EDUCATION WITHOUT BORDERS
• Deep learning techniques demonstrate really good accuracy
for artery/vein classification

• Where local information is poor, a global graph-based method
still improve the CNN labeling (here our fast LSP method)

• Future works:
• get rid of the graph-based method  need for more labeled data
 using our CNN pretrained model, learn with more data with semi-

supervised CNN variant like adversarial networks
 feed the CNN with a larger patch



QUESTIONS

PROVIDING AN EDUCATION WITHOUT BORDERS

fantin.girard@polymtl.ca
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