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Voltage Control in Distribution Systems
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= Distributed energy resources (DERs) greatly challenge
distribution system voltage control
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Literature Review

= DERs also serve as reactive power (VAR) resources
= Facilitate fast voltage-VAR control
= Existing approaches
— Optimization/optimal power flow (OPF)-based
— Local feedback control
= OPF-based approaches

— Centralized [Farivar-Low "12][Valverde et al "13]

— Distributed [Dall’/Anese-Zhu-Giannakis “13][Bolognani et
al “15][Liu-Zhu "17][Liu-Shi-Zhu "17]

= Assumption: strongly-connected communication
graph among DERs
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Commu.-Optimality Tradeoff
= Commu. infrastructure is still under-deployed
DOE "15] in current distribution systems

= |ocal feedback control: [Farivar-Low "13][Zhu-
Liu “15][Li-Qu "15][Zhu-Li "16][Kekatos et al "16]

= Suffers from loss of optimality ! NG k
— Min. weighted voltage mismatch [Far 3oe N hu-
Liu '15]
IEEE 1547.8 standard

— Not lead to the minimizer of the volt
problem [Kekatos et al '16]

Communication-free  Optimal?
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System Model

= Distribution network (W, €) with A/ :={0,---, N} set of
buses and € := {(¢,7),Vi,j € N'} line segments

= [inDistFlow model: linearized power flow for
distribution networks [Baran-Wu '89]
v=Xq+V
" Voltage-VAR optimization [Liu-Shi-Zhu "16, "17]

> Network-wide

—

operational cost

Desired voltage profile —

VAR provision cost

q < @ +<— Feasible VAR|injection

= Cannot be solved exactly with no communications
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Game-theoretic Formulation

" |[nformation structure
— Each bus-j accesses: voltage mismatch (v; — ;) , VAR
input ¢;, and its own cost % [(vj — i)’ + chﬂ
— Operational cost is affected by other buses’ ¢—;
" Strategic game G := (K,{Q;} ex, {U;}jex) With K := N/{0}

= |ndividual payoff: U;(qj,q—j) = — % (vj — Nj)2 - %qugz

N 2
1 ) 1,
==-3 ( E Xjiqi + ,uj> ~ 56
i=1

= Equivalent to finding the Pareto optimum: maximize

social welfare  U(q)= > Uj(g,q-)
JEN/{0)
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Game-theoretic Formulation

= Comparison of terms

Volt.-VAR-Opt. | Bus with DER | Operational VAR Feasible Network-
cost injection set wide cost
Game-theoretic | Agent/player Payoff Action | Action set Social
formulation welfare

= Solution concepts: Pareto optimum (PO), Nash
equilibrium (NE)
U(Q_]?Q ) > Uj(q5,q- )VQJGQ]L]EIC

— NE is generally inefficient in achieving system-level
objective
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= Communication-free Algorithm
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Payoff-based Learning (PBL)

" Learning process: dynamics solving for PO or NE

= Payoff-based learning
— Choose ¢; (t) following a strategy

probj(t) = F; ({q; (1), Uj @@}, ...,y
— Only observe Uj (a(?))
= Most PBL solve only for

— NE [Goto et al '12][Tatarenko '16]
— Potential games [Marden-Shamma ’12][Zhu et al "13]

" For PO and generic payoffs under finite action sets:
[Marden et al '14]
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Learning Dynamics

= Discretize action sets 9;
= Each agent-j maintains internal state |q;, 4;, m;]
— q; € 9Q; the benchmark VAR injection

— u; the benchmark payoff
— Mmj the mood that takes values either content (C) or

discontent (D)
= Two steps
— (S1) VAR injection dynamics
— (S2) State dynamics
= Parameters: exploration rate € > 0, constantc = N
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Learning Dynamics

(S1) VAR injection dynamics: determine strategy
p"“Ob;]'j by the state [6.7]'7 Uj, mj]
— Content state (m; = C):

C

e . _.
p’l“Ob;I-j — { |Qj|—617 for q; 7& ?J
1 —e€% for gq; =g,

— Discontent state (m; = D):

1
Vg, € Q.
Q% =

(S2) state dynamics: update state [G;, @;, m;] by the
payoff U and input 4

4; __
prob P =
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Learning Dynamics

= (S2) state dynamics:

— Content state(m; = C):
«If lgj,u5) = @5, 44),

[q.77 Uj, C] , with pr()b. 61_U’j

_ (a5, u;]
Else [g;, 45, C] { [qj, u;, D], with prob. 1 — '~

— Discontent state(m; = D):

1—wu;

_ (q; ;] [q;,uj,C],with prob. e
5, a5, D] —— { (s, w;, D], with prob. 1 — ¢! =%s

= Commu.-free & model-free
= Used in wind farm turbine control [Marden-Pao ’13]
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Convergence

= The game ¢ is interdependent

Definition 1. (Interdependence.) An N-agent game G on a
finite action space Q is interdependent if, for every q € Q
and every proper subset of agents in J C N/ {0}, there ex-
ists an agent i ¢ J and a choice of actions q’; € [[,c 7 (Q;)

such that U; (¢'7,q-7) # Ui (a7,4-7).

Lemma 1. The voltage-VAR optimization game G has the
interdependent structure.

— |dea: the distribution network (N, ) is connected

= Convergence in probability

Theorem 1. Suppose all the buses choose their instanta-
neous VAR injection level following the updates in (S1)-(S2).
For any given parameter 0 < 0 < 1, if the exploration rate
¢ > 0 is sufficiently small, then q(t) € argmax,.o U(q)
will hold after for sufficiently large number of update periods
with at least probability 0.
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Convergence

Idea: the perturbed Markov process |q, t, m|

The limit stationary distribution exists

lim p€ = p

e—0
The support of ° | i.e., the states z that u°(z) > 0,
are the stochastically stable (SS) states the algorithm

converges to

The states [q, i, m| are SS iff @ minimizes the social
welfare

Convergence in probability with small €
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= Numerical Results
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Numerical Results

650
= |EEE 13-bus test feeder
616 6i5 '632 6i3 %E 6i4
" lete=1x10"7%and c=N+1
= Actionset Q; =[-06:02:06] NN o
. o o L
= Sample average welfare U?
1 t—1 [
rrt . 652 680
U' =) Ulat)
7=0
= Convergent VAR injection
Bus # 632 | 634 | 671(692) | 611 | 675
Our Alg. | 04150 | 0.3930 | 0.5980 | 0.5995 | 0.5990
NE 0.0211 | 0.0312 0.1450 0.1844 | 0.1612
Opt. Disc. | 0.4000 | 0.4000 0.6000 0.6000 | 0.6000
Opt. Cont. | 0.3991 | 04066 | 0.6000 | 0.6000 | 0.6000

ECE ILLINOIS

ILLINOIS




Numerical Results
= Convergent social welfare
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— NE is about 33% less efficient
— Discretized Q; works fine
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Numerical Results
= |EEE 37-bus test feeder
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Conclusions

Develop a communication-free algorithm that
achieves the network-wide optimal performance for
voltage-VAR optimization

Open up the possibility for leveraging tools from
game-theoretic control to voltage regulation,
especially under limited communications

Future work

— Explore more efficient payoff-based learning
algorithms to handle dynamic settings

— Understand the value of communications from a
game-theoretic perspective
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