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Underlay Spectrum Sharing Networks

 Primary Network has existing primary users (PUs) in wideband.

 Secondary network is deployed in same band.

– BS needs to eliminate downlink interference to PUs.

– Use multiple antenna array to steer nulls toward PUs.
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Wideband Null Steering

 Wideband null steering is required from BS, since each PU occupies wideband.

 BS uses signal received from PUs for null steering.
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System Model and Problem Statement

 𝒓𝑓 𝑛 :𝑀 × 1 received signal vector in bin 𝑓 ∈ {1, 2, … , 𝐹} at instant

𝑛 = 0, 1, … , 𝑇 − 1.

 𝒓𝑓 𝑛 = σ
𝑙=1

𝐿𝑓 𝑝𝑙
𝑓
𝑥𝑙
𝑓
(𝑛) 𝒉𝑙

𝑓
+𝒘𝑓 𝑛
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RF front end at BS
Sampling rate: 𝐹𝑠

𝐹- point FFT 𝒓𝑓(𝑛)

Antenna array (𝑀-elements)

𝒓(𝑡)

𝐿𝑓 = number of PUs in bin 𝑓

𝑝𝑙
𝑓
= transmitted power from PU-𝑙

𝑥𝑙
𝑓
𝑛 = transmitted symbol from PU-𝑙

𝒘𝑓 𝑛 : noise vector ∼ 𝐶𝑁 0,𝑹𝑤
𝑓

𝒉𝑙
𝑓
= 𝑀 × 1 channel vector between PU-𝑙 and BS in bin 𝑓

Problem Statement:

Estimate null space matrices 𝑼𝑓 without prior knowledge of 𝒉𝑙
𝑓

, such that

(𝑼𝑓)𝐻𝒉𝑙
𝑓
= 𝟎, ∀𝑙

PU-1

PU-2
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Complexity of Existing Wideband Approach

 Existing solutions use narrowband techniques with fine frequency resolution [1,2].

 Fine frequency resolution at BS:

– To obtain spectrum occupancy with high accuracy [3].

– Due to overdesigned system, e.g., Δ𝑓 in LTE < coherence BW of extended 
pedestrian A (EPA) model.

– Results in large number of bins.

– Increases complexity.

 Complexity  ∝ # occupied bins by  PUs.

 Proposed approach:

– Exploit correlation in adjacent bins to reduce complexity.
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Correlation vs Frequency Separation

 Correlation in channel vectors in bin 𝑖 and bin 𝑗 = 𝐶𝑖𝑗 = cos2(𝜃𝑖𝑗) [4]
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𝐹𝑠 = 20 MHz, 𝐹 = 512, 𝑀 = 8.

𝒉𝑖
𝒉𝑗

𝜃𝑖𝑗

Frequency bin separation 𝑖 − 𝑗

𝐶
𝑖𝑗

𝒉𝑖: Channel vector in bin 𝑖
𝒉𝑗: Channel vector in bin 𝑗

[4] Choi et. al., “Interpolation based transmit beamforming for MIMO-OFDM with limited feedback,” IEEE TSP, Nov. 2005
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Estimate covariance matrices ෡𝑹𝑓, 𝑓 ∈ 𝐹𝑎
using 𝑇 samples of 𝒓𝑓 𝑛 , 𝑛 = 1, … , 𝑇

Proposed Algorithm
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𝒓𝑓 𝑛 , 𝑓 ∈ 𝐹𝑎 : set of bins with at least one PU
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Proposed Algorithm
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Proposed Algorithm
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Proposed Algorithm
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Proposed Algorithm
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Null Spaces in Correlated Bins
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𝒗𝑖 𝒗𝑗
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𝑼𝑗

𝜃𝑖𝑗

𝜃𝑖𝑗

 𝒗𝑖: Eigen vector of ෡𝑹𝑖 − 𝑹𝑤
𝑖 aligned with channel vector 𝒉𝑖

 Higher 𝐶𝑖𝑗 = cos2(𝜃𝑖𝑗) ⇒ more aligned null spaces 𝑼𝑖 , 𝑼𝑗

⇒ Bin 𝑗 can be clustered with bin 𝑖.

𝒉𝑖 𝒉𝑗

𝑼𝑖

𝑼𝑗

𝜃𝑖𝑗

𝜃𝑖𝑗

Channel vectors Eigen vectors
aligned with
Channel vector

Null space 
vectors

Null space
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Criterion for Clustering bin 𝑗 with 𝒊

 ෡𝐷𝑖𝑗 = Tr 𝑼𝑖 𝐻 ෡𝑹𝑗 − 𝑹𝒘
𝑗

𝑼𝑖 ∼ 𝑁 1 − 𝐶𝑖𝑗 𝜇𝑗 , 1 − 𝐶𝑖𝑗
2
𝜎𝑗
2 .

– 𝜇𝑗 = Tr 𝑹𝑗 − 𝑹𝑤
𝑗

, 𝜎𝑗
2 =

𝜇𝑗
2+𝜎𝑤

2

𝑇
, Ƹ𝑝𝑟

𝑗
∼ 𝑁 𝜇𝑗 , 𝜎𝑗

2 .

 ෡𝐷𝑖𝑗 is Gaussian due to non-asymptotic estimation.

 Cluster 𝑗 with 𝑖 (𝑆𝑖 ← 𝑗) if ෡𝐷𝑖𝑗 ≤ 𝛾0
𝑗
.

 Computations for ෡𝐷𝑖𝑗 (≈ 2𝑀3 flops) ≪ computations for EVD (≈ 23𝑀3 flops) [5].

14

𝒗𝑖 𝜃𝑖𝑗

𝑼𝑖

𝒆

Ƹ𝑝𝑟
𝑗
𝒗𝑗

෡𝐷𝑖𝑗 = 𝒆
2

Ƹ𝑝𝑟
𝑗
= Tr ෡𝑹𝑗 − 𝑹𝑤

𝑗
: Est. received power in bin 𝑗

෡𝐷𝑖𝑗: Component of Ƹ𝑝𝑟
𝑗

null space 𝑼𝑖

Correlation 𝐶𝑖𝑗 ⇒ 𝜃𝑖𝑗 ⇒ ෡𝐷𝑖𝑗

[5] Arakawa, “Computational workload for commonly used signal processing kernels”, Project Report SPR-9, MIT Lincoln Lab., 2006.
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Selection of Threshold 𝜸𝟎
𝒋

 To cluster bins with correlation 𝐶𝑖𝑗 ≥ 1 − 𝛿0 with probability 𝑃0
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𝛾0
𝑖+𝐾

𝑗 = 𝑖 + 1 𝑗 = 𝑖 + 2 𝑗 = 𝑖 + 3 𝑗 = 𝑖 + 𝐾

Prob. distribution function of ෡𝐷𝑖𝑗

𝑓෡𝐷𝑖𝑗 (𝑥)

𝑥0

Larger 𝜹𝟎 ⇒ larger threshold ⇒ more bins will be clustered with bin 𝒊

෡𝐷𝑖𝑗 ≤ 𝛾0
𝑗
= 𝛿0𝜎𝑗 𝑄

−1 1 − 𝑃0 + 𝛿0𝜇𝑗
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– Clustering of Correlated Frequency Bins to Reduce Complexity 
of Null Steering

 Numerical Results

 Conclusion
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Simulation Setting

 BS parameters: 𝑀 = 8 antennas, 𝐹𝑠 = 20MHz, 𝐹 = 512 bins.

 3 PUs transmitting OFDM signals with bandwidths 5MHz. Average RX SNR = 10dB.

 Number of occupied bins = 312.  

 # samples to estimate non-asymptotic ෡𝑹𝑖: 𝑇 = 100.

 Noise is white Gaussian: 𝑹𝑤
𝑖 = 𝑰.

 Algorithm parameters: 𝑃0 = 0.95,  𝛿0 ∈ {0.01, 0.05, 0.1}.

 Performance metrics:

– Quality of null to PU-𝑙 : 𝑼𝑖𝒉𝑙
𝑖

2
/ 𝒉𝑙

𝑖
𝟐

– Complexity: number of EVD computations.
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Impact of 𝜹𝟎 on Quality of Null

 Use larger 𝛿0, e.g., 𝛿0 = 0.1, in non-overlapped band to get same null quality as brute 
force method.

 In overlapped band, smaller clusters (hence 𝛿0 = 0.01) are required to achieve 
comparable performance as brute force method.
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Impact of Channel Model on Complexity

19
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Proposed, EPA channel delay spread = 43ns

Proposed, urban microcell channel, delay spread = 36ns

Proposed, ETSI B channel delay spread = 99ns 

• Smaller delay spread ⇒ more bins per cluster⇒ reduced # EVD computations
• 𝛿0 = 0.1 for non-overlapped bins reduces complexity up to 1/10.
• 𝛿0 = 0.01 for overlapped bins will reduce complexity up to 1/3. 

Brute force approach

312 = number of occupied bins
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Conclusion

 Proposed frequency clustering for wideband null steering

– Does not require prior knowledge of channels or training.

– Reduces complexity of wideband null space estimation 
● Number of EVDs reduced by 1/3 to 1/10 as compared to brute force.

– Number of computations depend on embedded correlation in 
the channels.
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Thank you very much!

Questions?


