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¢ Introduction

— Wideband Null Steering for Interference Control in Spectrum
Sharing Networks.

¢ System Model and Proposed Algorithm

— Clustering of Correlated Frequency Bins for Low Complexity
Null Steering

¢ Numerical Results

¢ Conclusion
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Underlay Spectrum Sharing Networks
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¢*  Primary Network has existing primary users (PUs) in wideband.

¢ Secondary network is deployed in same band.

— BS needs to eliminate downlink interference to PUs.
— Use multiple antenna array to steer nulls toward PUs.
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Wideband Null Steering “CORES
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¢ Wideband null steering is required from BS, since each PU occupies wideband.
¢ BS uses signal received from PUs for null steering.
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System Model and Problem Statement 3
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N r(t) : | RF front end at BS o f
/ i ! | Sampling rate: F; F-point FFT r (TL)
PU-2 g \
J

/ Antenna array (M-elements)
PU-3 Q .

¢ 1/ (n):M X 1 received signal vector in bin f € {1, 2, ..., F} at instant
n=201,..T-—1.

. rf(n)=Zf£1J;{x[(n)h{+wf(n)

Ly = number of PUs in bin f

v
BS

plf = transmitted power from PU-I
le(n) = transmitted symbol from PU-1

w/ (n): noise vector ~ CN (O, Rfv)

h{ = M X 1 channel vector between PU-[ and BS in bin f
Problem Statement:
Estimate null space matrices U/ without prior knowledge of hf, such that

(UHHR = 0,vI
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¢ Existing solutions use narrowband techniques with fine frequency resolution [1,2].

¢*  Fine frequency resolution at BS:
— To obtain spectrum occupancy with high accuracy [3].

— Due to overdesigned system, e.g., Af in LTE < coherence BW of extended
pedestrian A (EPA) model.

— Results in large number of bins.
— Increases complexity.

¢ Complexity « # occupied bins by PUs.

¢ Proposed approach:
— Exploit correlation in adjacent bins to reduce complexity.

[1] Tsinos et. al., “Blind Opportunistic Interference Alignment in MIMO Cognitive Radio Systems,” Emerg. Sel. Top. Circuits Syst. IEEE J. On,
vol. 3, no. 4, pp. 626—639, Dec. 2013.

[2] Kouassi et. al. “Reciprocity-based cognitive transmissions using a MU MIMO approach,” IEEE ICC, June 2013
[3] Harjani et al., "Wideband blind signal classification on a battery budget," in [EEE Commu. Magazine,, October 2015.
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Correlation vs Frequency Separation

* Correlation in channel vectors in bin i and bin j = C;; = cos*(6;;) [4]

m—Urban Microcell, RMS delay spread = 36.17ns
== = Fxtended Pedestrian A (EPA), RMS delay spread= 43.13ns
wnmnn ETS| B channel model, RMS delay spread= 98.99ns
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h': Channel vector in bin i
h’: Channel vector in bin j
[4] Choi et. al., “Interpolation based transmit beamforming for MIMO-OFDM with limited feedback,” IEEE TSP, Nov. 2005
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Proposed Algorithm “CORES

XL
r/(n),f € F, : set of bins with at least one PU = Bins in set F,
Estimate covariance matrices R/, f € F, 1 essssenen | peesem |,
using T samplesof r/(n),n=1, ..., T Freq.

!
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Proposed Algorithm 3
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r/(n),f € F, : set of bins with at least one PU = Bins in set F,

Estimate covariance matrices ﬁf,f € F,

using T samplesof /' (n),n =1, ..., T |i Freq.
I « Center bin of new cluster. EVD of R* — R},
Compute null space U' at bin i R},: noise covariance

'
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Proposed Algorithm CORES

NSXL
r/(n),f € F, : set of bins with at least one PU = Bins in set F,
} 5i
Estimate covariance matrices R/, f € F, _,_,_+_,_—_,_>
using T samplesof r/(n),n=1, ..., T g Freq.

!

[ i < Center bin of new cluster. } EVD of R — R},

Compute null space U' at bin i R},: noise covariance

'

Form cluster S; around bin i. Proposed test for clustering
Si < j?Wherej=i+1,i+2,..| correlated bins (?)

}
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Proposed Algorithm

r/(n), f € F, : set of bins with at least one PU

!
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m Bins in set [,

Estimate covariance matrices R/, f € F, _,_,_+_,_—_,_>
using T samplesof /' (n),n =1, ..., T . Freq.

!

[ < Center bin of new cluster.
Compute null space U* at bin i

!
[ Form cluster S; around bin i. }

S; < j?Wherej=ix1,ix2,..

A 4

[Compute common null }

space: USi

|

EVD of R — R},
R}, : noise covariance

Proposed test for clustering
correlated bins (?)

1
EVD of R% = Z — (R —R})
jESipT'

;3,],.: Est. received power in bin j
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Proposed Algorithm CORES

XL
r/(n),f € F, : set of bins with at least one PU = Bins in set F,
| Clustered bins

Estimate covariance matrices ﬁf,f € F,

using T samplesof /' (n),n =1, ..., T |i Freq.
I « Center bin of new cluster. EVD of R* — R},
Compute null space U' at bin i R},: noise covariance

'

[ Form cluster S; around bin i. } Proposed test for clustering

S; < j?Wherej=ix1,i+2,..| correlated bins (?)

A 4

Compute common null EVD of RSi = Z i(ﬁj _ R‘J/'V)
space: U5t =0
E, =F\S; ﬁ,{: Est. received power in bin j

Repeat until F, = ¢

S:Set of clusters S;,

null spaces USi Number of EVD computations = 2 |S]|
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Null Spaces in Correlated Bins

Channel vectors h' h’ Eigen vectors
r aligned with
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¢ p': Eigen vector of Rt — R}, aligned with channel vector h!

¢ Higher (;; = cosz(Hl-j) = more aligned null spaces U, U’

= Bin j can be clustered with bin i.
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XL
«/ r pr = Tr( R’ — R;,, |: Est. received power in bin j
vl A II// ~ ] |
ilf D;;: Component of p;. null space U
// _| TCorreIation Cl] = l 01] — l DU
, . -
e

Dy = |lel|’

* Dy=Tr ((U)" (R - R})U) ~ ((1 Cij)w» (1 - Cij)szjz)-

.u]+a , pr _ N(,uj,ajz).

¢ ﬁij is Gaussian due to non-asymptotlc estimation.

~ wj=Tr (RN —R},), o} =

* Cluster j with i (S; « j)if D;; < vl
¢ Computations for ﬁij (= 2M3 flops) << computations for EVD (= 23M?3 flops) [5].

[5] Arakawa, “Computational workload for commonly used signal processing kernels”, Project Report SPR-9, MIT Lincoln Lab., 2006.
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Selection of Threshold y{) “CORES

¢ To cluster bins with correlation C;; = 1 — §, with probability P

Dij vy = 800; Q711 — Py) + Sou;

f5;; (x)
j=i+l  j=i+2 j=i+3 j=i+K
¥_ [
0 Prob. distribution function of Dj; e~ X

Larger 8, = larger threshold = more bins will be clustered with bin i
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¢

¢ Numerical Results

¢
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Simulation Setting CORES

¢ BSparameters: M = 8 antennas, F;, = 20MHz, F = 512 bins,
¢ 3 PUs transmitting OFDM signals with bandwidths 5MHz. Average RX SNR = 10dB.

PU-1 PU-2 PU-3
50% |
f m f \ creq. bin
65 128 192 256

321 440

Number of occupied bins = 312,
# samples to estimate non-asymptotic R: T = 100.

Noise is white Gaussian: R}, = I.
Algorithm parameters: P, = 0.95, §, € {0.01,0.05,0.1}.
Performance metrics:

*® 6 6 ¢ o

2 2
— Quality of null to PU-l:||U‘ | /||h'i|

— Complexity: number of EVD computations.
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PU'l PU—2 PU'3
50% overl
/ m f \ Freq. bin
65 128 192 256 321 440 .

Impact of 6y on Quality of Null
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Brute force method Proposed, §, = 0.01

Channel: Urban microcell (delay spread 36ns) Proposed, 8, = 0.05 Proposed, 8, = 0.1
» Y0 — Y- y Y0 — Y.

¢ Use larger §y, e.g., 6y = 0.1, in non-overlapped band to get same null quality as brute
force method.

¢ In overlapped band, smaller clusters (hence 6, = 0.01) are required to achieve
comparable performance as brute force method.
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Impact of Channel Model on Complexit iy
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Proposed, urban microcell channel, delay spread = 36ns
= Proposed, EPA channel delay spread = 43ns
Proposed, ETSI B channel delay spread = 99ns

== Brute force approach

£ 400
o
2 |
S . < 312 = number of occupied bins
> 300 ! -
o |
|
S .
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|
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- |
Q |
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> ]
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0o

* Smaller delay spread = more bins per cluster= reduced # EVD computations
* 6y = 0.1 for non-overlapped bins reduces complexity up to 1/10.
* 6y = 0.01 for overlapped bins will reduce complexity up to 1/3.
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¢ Proposed frequency clustering for wideband null steering
— Does not require prior knowledge of channels or training.

— Reduces complexity of wideband null space estimation
e Number of EVDs reduced by 1/3 to 1/10 as compared to brute force.

— Number of computations depend on embedded correlation in
the channels.
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Thank you very much!
Questions?
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