Unsupervised Frequency Clustering for Null Space Estimation in Wideband Spectrum Sharing Networks

Shailesh Chaudhari and Danijela Cabric University of California, Los Angeles, USA November 16, 2017

Outline

Introduction

 Wideband Null Steering for Interference Control in Spectrum Sharing Networks.

System Model and Proposed Algorithm

- Clustering of Correlated Frequency Bins for Low Complexity Null Steering
- Numerical Results
- Conclusion

Underlay Spectrum Sharing Networks

- Primary Network has existing primary users (PUs) in wideband.
- Secondary network is deployed in same band.
 - BS needs to eliminate downlink interference to PUs.
 - Use multiple antenna array to steer nulls toward PUs.

Wideband Null Steering

- Wideband null steering is required from BS, since each PU occupies wideband.
- BS uses signal received from PUs for null steering.

System Model and Problem Statement

• $r^{f}(n): M \times 1$ received signal vector in bin $f \in \{1, 2, ..., F\}$ at instant n = 0, 1, ..., T - 1.

• $r^{f}(n) = \sum_{l=1}^{L_{f}} \sqrt{p_{l}^{f}} x_{l}^{f}(n) h_{l}^{f} + w^{f}(n)$ $L_{f} = \text{number of PUs in bin } f$ $p_{l}^{f} = \text{transmitted power from PU-}l$ $x_{l}^{f}(n) = \text{transmitted symbol from PU-}l$ $w^{f}(n): \text{noise vector} \sim CN\left(0, \mathbf{R}_{w}^{f}\right)$ $h_{l}^{f} = M \times 1 \text{ channel vector between PU-}l \text{ and BS in bin } f$

Problem Statement:

Estimate null space matrices \boldsymbol{U}^{f} without prior knowledge of \boldsymbol{h}_{l}^{f} , such that $(\boldsymbol{U}^{f})^{H}\boldsymbol{h}_{l}^{f} = \boldsymbol{0}, \forall l$

Complexity of Existing Wideband Approach

- Existing solutions use narrowband techniques with fine frequency resolution [1,2].
- Fine frequency resolution at BS:
 - To obtain spectrum occupancy with high accuracy [3].
 - Due to overdesigned system, e.g., Δf in LTE < coherence BW of extended pedestrian A (EPA) model.
 - Results in large number of bins.
 - Increases complexity.
- Complexity \propto # occupied bins by PUs.
- Proposed approach:
 - Exploit correlation in adjacent bins to reduce complexity.

[1] Tsinos et. al., "Blind Opportunistic Interference Alignment in MIMO Cognitive Radio Systems," Emerg. Sel. Top. Circuits Syst. IEEE J. On, vol. 3, no. 4, pp. 626–639, Dec. 2013.

[2] Kouassi et. al. "Reciprocity-based cognitive transmissions using a MU MIMO approach," IEEE ICC, June 2013

[3] Harjani et al., "Wideband blind signal classification on a battery budget," in IEEE Commu. Magazine,, October 2015.

Correlation vs Frequency Separation

• Correlation in channel vectors in bin *i* and bin $j = C_{ij} = \cos^2(\theta_{ij})$ [4]

[4] Choi et. al., "Interpolation based transmit beamforming for MIMO-OFDM with limited feedback," IEEE TSP, Nov. 2005

UCLA

 $r^{f}(n), f \in F_{a} : \text{set of bins with at least one PU} \qquad \blacksquare \text{ Bins in set } F_{a}$ Estimate covariance matrices $\hat{R}^{f}, f \in F_{a}$ using T samples of $r^{f}(n), n = 1, ..., T$ Freq.

CORES

CORES

UCLA

Null Spaces in Correlated Bins

• $m{
u}^i$: Eigen vector of $\widehat{m{R}}^i - m{R}^i_w$ aligned with channel vector $m{h}^i$

Higher C_{ij} = cos²(θ_{ij}) ⇒ more aligned null spaces Uⁱ, U^j
 ⇒ Bin j can be clustered with bin i.

Criterion for Clustering bin *j* **with** *i*

$$\hat{p}_{r}^{j} = \operatorname{Tr}\left(\widehat{R}^{j} - R_{w}^{j}\right): \text{Est. received power in bin } j$$

$$\widehat{D}_{ij}: \text{ Component of } \hat{p}_{r}^{j} \text{ null space } \boldsymbol{U}^{i}$$

$$\uparrow \text{ Correlation } C_{ij} \Rightarrow \downarrow \ \theta_{ij} \Rightarrow \downarrow \ \widehat{D}_{ij}$$

•
$$\widehat{D}_{ij} = \operatorname{Tr}\left(\left(\boldsymbol{U}^{i}\right)^{H}\left(\widehat{\boldsymbol{R}}^{j}-\boldsymbol{R}_{w}^{j}\right)\boldsymbol{U}^{i}\right) \sim N\left(\left(1-C_{ij}\right)\mu_{j},\left(1-C_{ij}\right)^{2}\sigma_{j}^{2}\right)$$

- $\mu_{j} = \operatorname{Tr}\left(\boldsymbol{R}^{j}-\boldsymbol{R}_{w}^{j}\right), \sigma_{j}^{2} = \frac{\mu_{j}^{2}+\sigma_{w}^{2}}{T}, \ \hat{p}_{r}^{j} \sim N\left(\mu_{j},\sigma_{j}^{2}\right).$

- \widehat{D}_{ij} is Gaussian due to non-asymptotic estimation.
- Cluster *j* with *i* ($S_i \leftarrow j$) if $\widehat{D}_{ij} \le \gamma_0^j$.
- Computations for \widehat{D}_{ij} ($\approx 2M^3$ flops) \ll computations for EVD ($\approx 23M^3$ flops) [5].

^[5] Arakawa, "Computational workload for commonly used signal processing kernels", Project Report SPR-9, MIT Lincoln Lab., 2006.

Selection of Threshold γ_0^j

• To cluster bins with correlation $C_{ij} \ge 1 - \delta_0$ with probability P_0

$$\widehat{D}_{ij} \le \gamma_0^j = \delta_0 \sigma_j Q^{-1} (1 - P_0) + \delta_0 \mu_j$$

Larger $\delta_0 \Rightarrow$ larger threshold \Rightarrow more bins will be clustered with bin i

Outline

- Introduction
 - Wideband Null Steering for Interference Control in Spectrum Sharing Networks.
- System Model and Proposed Algorithm
 - Clustering of Correlated Frequency Bins to Reduce Complexity of Null Steering
- Numerical Results
- Conclusion

Simulation Setting

- BS parameters: M = 8 antennas, $F_s = 20$ MHz, F = 512 bins.
- 3 PUs transmitting OFDM signals with bandwidths 5MHz. Average RX SNR = 10dB.

- Number of occupied bins = 312.
- # samples to estimate non-asymptotic \widehat{R}^i : T = 100.
- Noise is white Gaussian: $\mathbf{R}_{w}^{i} = \mathbf{I}$.
- Algorithm parameters: $P_0 = 0.95, \ \delta_0 \in \{0.01, 0.05, 0.1\}.$
- Performance metrics:
 - Quality of null to PU- $l: \left\| \boldsymbol{U}^{i} \boldsymbol{h}_{l}^{i} \right\|^{2} / \left\| \boldsymbol{h}_{l}^{i} \right\|^{2}$
 - Complexity: number of EVD computations.

Impact of δ_0 on Quality of Null

CORES

- Use larger δ_0 , e.g., $\delta_0 = 0.1$, in non-overlapped band to get same null quality as brute force method.
- In overlapped band, smaller clusters (hence $\delta_0 = 0.01$) are required to achieve comparable performance as brute force method.

Impact of Channel Model on Complexity

- Smaller delay spread ⇒ more bins per cluster ⇒ reduced # EVD computations
- $\delta_0 = 0.1$ for non-overlapped bins reduces complexity up to 1/10.
- $\delta_0 = 0.01$ for overlapped bins will reduce complexity up to 1/3.

RIES

Conclusion

- Proposed frequency clustering for wideband null steering
 - Does not require prior knowledge of channels or training.
 - Reduces complexity of wideband null space estimation
 - Number of EVDs reduced by 1/3 to 1/10 as compared to brute force.
 - Number of computations depend on embedded correlation in the channels.

Thank you very much! Questions?

