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Introduction
 Let's say you develop an object detection or classification 

algorithm.  How do you determine success?

 Download a data set

 Train and test your algorithm

 Compare your results to others'

 OR build your own data set, define acceptable results, and test 

your algorithm

 Is your solution significant?
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Problem
 Intuitive feel for difficulty of classification task

 Can we tell if a data set is “inherently separable?”
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Previous Work
 Previous work suggests:

 Real data has structure (Han & Boutin, 2015)

 Random projections can reveal structure (Kaski, 1998; Bingham 

& Mannila, 2001)

 TARP (Thresholding After Random Projections) (Yellamraju et. 

al, 2015)

 Use series of random projections to develop benchmarks
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Proposed Solution
 TARP (Thresholding After Random Projections)

 Randomly project data to 1-D r times

 Classify with sliding threshold

 Build ROC curve

 Find the “best” projection – the one with the lowest AAC (area 

above the ROC curve)

 Measure elapsed time (complexity)

 Repeat for r = 1, 2, 3, …
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Proposed Solution
 Use expected results as series of benchmarks

 Threshold average approximates expected best ROC curve

 The AAC of the expected best ROC vs. the expected elapsed 

computational time (CT) for each r is considered a benchmark
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Proposed Solution
 Plotting the benchmarks yields a curve on AAC-CT plane:

 Neyman-Pearson (N-P) test for theoretical maximum 

separability
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Proposed Solution
 The AAC-CT space is divided into regions

 The regions characterize other detection methods
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Experimental Results
 Selected results from different data sets:

Synthetic 2-D normal MFEAT handwritten digits (Duin, 1998)

MSTAR SAR 

(radar) targets 

(SDMS, 1995)
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Experimental Results
 Synthetic 2-D normal

 Covariance I

 Class means (0, 0) 

and (0, 1)

 4,000 samples

SVM Linear

SVM Gaussian

Random Projections

N-P AAC
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Experimental Results
 MFEAT 0 vs. 1

 Fourier coefficients

 76-D

 400 samples

SVM Linear

SVM Gaussian

Random Projections
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Experimental Results
 MFEAT even vs. odd

 Profile correlations

 216-D

 2,000 samples

SVM Linear

SVM Gaussian

Random Projections
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Experimental Results
 MSTAR BTR70 vs. T72

 PCA coefficients

 358-D

 1,556 samples 

(392 BTR70/1,164 T72)

SVM Linear

SVM Gaussian

Random Projections
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Conclusion
 Detection problems have different difficulties

 Investigated benchmark curve
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Extra Slides

Demonstration for r = 2
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Extra Slides
r = 2 demo

First random vector projection
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Extra Slides
r = 2 demo

Second random vector projection
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Extra Slides
r = 2 demo

Choose the best ROC curve out of 2
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Extra Slides

Algorithm Flowchart
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Extra Slides

Start

End

Choose 𝑟 Read data

TrainingTesting

Find mean training time and 

testing time, threshold average 

ROC curve, and compute AAC 

of average ROC curve

Output mean 

training time, 

mean testing 

time, and AAC

Repeat 𝐾
times
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Extra Slides

Training

Generate 𝑟
random vectors

Project training 

data onto each of 

𝑟 random vectors

Build ROC 

curve for each of 

𝑟 projections

Compute AAC 

for each ROC 

curve

Select the ROC curve with the lowest 

AAC and record the random vector 

which produced it

Start timer

Stop timer and 

record training 

time
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Extra Slides

Testing

Build ROC 

curve for 

projection

Project testing 

data onto the 

recorded best 

vector

Start timer

Stop timer and 

record testing 

time

Compute and 

record AAC for 

ROC curve


