

Computational Scratch Assay - A New Frontier for Image Analysis:

Preliminary Study of Multi-Cellular Segmentation

Authors: Xingyu Li, and K.N. Plataniotis http://www.dsp.utoronto.ca

Multimedia Laboratory The Edward S. Rogers Dept. of Electrical and Computer Engineering University of Toronto

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

Multimedia Lab

The Edward S. Rogers Dept. of Electrical and Computer Engineering

Image and Video Processing

- Digital Camera Processing
- Biomedical Imaging
- Social Signal Processing
- Universal Multimedia Access

Biomedical

Konstantinos Plataniotis

kostas@ece.utoronto.ca

Body Area Networks

ECG/EEG Analysis

Brain-Computer Interface

 Biomarker and Neural Feedback Rehabilitation & Motor Imagery Detection

Biometrics & Surveillance

- Face Recognition
- Gait Recognition
- Privacy Solutions
- Visual Surveillance

Multimedia Security

- Authentication
- Image & Video Encryption
- Secure Streaming
- Visual Secret Sharing

Outline

- Computational scratch assay
 - ➤What is scratch assay?
 - >What is computational scratch assay?

General framework

Multi-cellular segmentation

➢ Prior arts

- Proposed multi-cellular segmentation algorithm
- ➤ Comparative evaluation

Conclusion

Image Analysis New Frontier: Computational Scratch Assay

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

What Is Scratch Assay (SA)?

 SA (or wound healing assay) is a laboratory technique to study cell migration and inter-cell interaction.

The figure is from Moreno-Bueno et al. "The morphological and molecular features of the epithelial-to-mesenchymal transition", nature protocols, Oct. 2009.

Challenges In Scratch Assay

- Scratch front-edge tracing is a fundamental task in SA.
- SA is time-consuming.
 Identifying the front-edge in each images manually.
 Using multiple replicates for analysis quality.
- SA is prone to subjective.

Computational Scratch Assay (CSA)

- CSA exploits advanced techniques to enable computers to do intelligent scratch assay.
 - > Aiming for efficient & reliable analysis.
- CSA is in infancy.
 - Dedicated algorithms are under-developed.
- General analysis pipeline:

Preliminary Study: Multi-Cellular Segmentation

8

FACULTY OF APPLIED SCIENCE & ENGINEERING

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Multi-Cellular Segmentation

- Goal: dividing an image into wound(background) regions & cell-populated areas.
 - > No need to segment single cell
- Challenges:
 - High variability in imaging condition.
 - Irregular scratch front-edge due to cells' different mitigation rates.

9

Prior Arts

Representative methods	Category	Key techniques	Performance ranking [4]
TScratch [1]	Unsupervised	Discrete curvelet transform + thresholding	3
Topman's [2]	Unsupervised	Intensity standard deviation + parallel filtering + thresholding	1
NultiCellSeg [3]	Supervised	Intensity gradient + support vector machine + graph cut based segmentation	2

• All have poor performances in scatter sassy of the public BBBC multicellular segmentation benchmark [4].

[1] Geback et al., "Tscratch: a novel and simple software tool for automated analysis of mono-layer wound healing assays", Bio Techniques, Apr. 2009.

[2]Topman et al., "A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically damaged site", Medical Engineering & Physics, May 2011.

[3] Zaritsky et al., "Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images", PLOS One, Nov. 2011.

[4] Zaritsky et al., "Benchmark for multi-cellular segmentation of bright field microscopy images", BMC Bioinformatics, 2013.

Proposed Multi-Cellular Segmentation

Block diagram of the proposed method

- Introducing a LBP-variant edge detector for edge extraction.
- Adopting the parallel filtering structure in Topman's method for coarse segmentation.

LBP-Variant Edge Detector

• The first attempt to adopt the LBP paradigm for edge information extraction.

- Selection of threshold θ
 - A large threshold extracts strong edges.
 - A small threshold generates a fine edge map.

Properties of LBP-Variant Edge Detector

- Insensitivity to small intensity change
 - Obtained results are robust to non-uniform imaging illumination.
- Direction-aware property
 - > Given e_c , information of edge orientations at pixel c can be uniquely determined.
 - Example: for image (a), edges along different orientation (c)-(f) can be uniquely retrieved from the obtained edge map (b).

Experimentation

Objective: to evaluate the proposed method Experimental setup

- Data set: BBBC multi-cellular segmentation benchmark
 - > 5 8-bit grayscale scatter images with segmentation ground truth

- Methods for comparison:
 - Tscratch [1], Topman's [2], MultiCellSeg [3]
- Evaluation metric: F-measure = $\frac{2precision \cdot recall}{precision + recall}$

[1] Geback et al., "Tscratch: a novel and simple software tool for automated analysis of mono-layer wound healing assays", Bio Techniques, Apr. 2009.

[2]Topman et al., "A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically damaged site", Medical Engineering & Physics, May 2011.

[3] Zaritsky et al., "Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images", PLOS One, Nov. 2011.

Experimentation Results

Statistics of multi-cellular segmentation over the BBBC scatter images

Algorithm	Mean F-measure	Median F-measure
TScratch	0.514±0.164	0.536
MultiCellSeg	0.611±0.107	0.587
Topman's	0.647±0.086	0.616
Proposed *	0.858±0.042	0.861

• Due to the edge detector's insensitivity to non-uniform imaging illumination, the proposed method achieve more accurate segmentation than the Topman's method.

* The results are generated with threshold $\theta = 25$ in the proposed method.

Example

(a) Scatter image a4b.tif

(c) Tscratch method

(e) Topman's method

kampie

(b) Ground truth: manual segmentation

(d) MultiCellSeg method

(f) Proposed method

Conclusions

- Computational scratch assay is a new frontier in image analysis research.
 - We hoped this study would encourage more researchers to contribute this research realm.
- We presented a very preliminary study on multi-cellular segmentation in scratch images.
 - A LBP-variant edge detector was introduced, which was capable of preserving edge information along various orientations.
 - Multi-cellular segmentation is much improved in the public BBBC scatter image set.

Thank you very much for your attention.

17

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING