

Defense against Stealthy Jamming Attacks in Wide-band Radios- A Physical Layer Approach

T. Nawaz*, L. Marcenaro and C. S. Regazzoni

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture – DITEN University of Genova, Italy.

Email: tassadaq.nawaz@ginevra.dibe.unige.it

Why Cognitive Radio?

Spectrum utilization from 30 MHz to 6 GHz in Singapore.

Cognitive Radio [1, 2]

• Spectrum scarcity

- Cognitive radio
 - Environment awareness and spectrum intelligence
- Applications
 - Dynamic spectrum access
 - Communication electronic warfare solutions

Spectrum Sensing Techniques [3, 4]

- Matched Filter
 - Perfect knowledge
 - Dedicated receiver architecture
- Eigenvalue Detection
 - Max-Min eigenvalues
 - Computational complexity
 - Difficulty to threshold selection
- Feature Detection
 - Cyclostationary property
 - Complex processing algorithm
- Energy Detection
 - Simple implementation
 - Poor performance

Complexity

RF Jamming [13, 14]

- Illegitimate RF transmission with the objective of causing maximum distortion to the communication of the targeted system.
- CR technology has enabled devising and deploying of more advanced, self-reconfigurable jamming and anti-jamming solutions.

Problem Formulation

- Wideband spectrum
- Occupied by various narrowband waveforms
- Narrowband jammer

Stealthy Jammer [17, 18]

- Equiped with sensing capability
- Adaptive

OPTIMAL JAMMING SIGNALS IN A COHERENT SCENARIO

Victim Signal	Modulation scheme of pulsed jamming signal
BPSK	BPSK
QPSK	QPSK
4-PAM	BPSK
16-QAM	QPSK

Compressed Sensing [8,10]

- Conventional spectral estimation methods require to operate at or above Nyquist rate
- Requires high rate A/D or bank of low rate A/D for wideband signals
- Compressed Sampling: sub-Nyquist rate sampling and reliable signal recovery via computationally feasible algos
- Applicable to sparse signals

Limits on Sampling Rates [9,11]

Wide band of interest: BW = B

- Lower bounds on sampling rates f_s
 - Lowest f_s for reconstruction without aliasing
 - Nyquist Rate = 2B
- Lowest f_s for reconstruction of CR signals
 - Motivating factor for CR is low spectrum utilization
 - Landau rate = $2B_{eff} = 2r_{nz}B < Nyquist Rate$

Compressed Sensing Basics

- $Y = H_{K \times N} S$
- S should be sparse
- **H** can be fat $(K \leq N)$

- Compressed Sensing
 - Given Y and H, unknown S can be found with high probability!

Sub-Nyquist rate Sampling [10, 22]

- Received signal: $r(t): t \in [0, NT_s]$
 - Discrete representation:
- Linear Sampling:

• Compression:

 $\mathbf{X}_t = \mathbf{S}_c \mathbf{r}_t = \mathbf{S}_c \mathbf{F}^{-1} \mathbf{r}_f$ $S_c : K \times N$

 $r_t \leftrightarrow r_f = \mathbf{F} r_t$

Sub-Nyquist rate Sampling [20]

 Estimation is achieved by solving the following convex optimization problem:

$$\begin{array}{ll} \arg\min \| \mathbf{r}_f \|_1, \\ \mathbf{r}_f \end{array} \qquad s.t. \quad \mathbf{X}_t = \mathbf{S}_c \mathbf{F}^{-1} \mathbf{r}_f \end{array}$$

- Techniques to solve the above problem:
 - Linear Programming: Basis Pursuit
 - Iterative greedy algorithms: Maching Pursuit and orthognal Maching Pursuit

The I_n -norm of x is defined as:

$$\|x\|_{n} = \sqrt[n]{\sum_{i} |x_{i}|^{n}}$$

Cyclostationary Spectral Analysis [4]-[7]

- Good performance at medium-to-low SNRs
- Higher implementation complexity than EDs
- Cyclostationarity of the modulated signals
- The Fourier Transform of the cyclic autocorrelation function is known as spectral correlation function (SCF)
- Furthermore, different types of modulated signals (BPSK, AM, FSK, MSK, QAM, PAM) with overlapping power spectral densities have highly distinct SCFs.
- AWGN is WSS and has no cyclic correlations

Spectral Correlation Function and Alpha Profile

Proposed Algorithm

Algorithm 1 Pseudo-code for proposed algorithm

- 1: function JAMMER DETECTOR
- 2: Initialise all SB states to "free"
- 3: Receive the WB signal
- 4: Set compression rate K/N
- 5: Construct the measurement matrix Sc
- 6: Estimate the WB from compressed samples using BP
- 7: Compute the SCF of estimated WB signal
- 8: Extract the α profile from SCF
- 9: Divide WB into *i* SBs
- 10: **for** i = 1 to I, **do**
- 11: Access the database
- 12: Compare parameters with the database waveforms
- Decision ← Licit or Jammer
- 14: end for

15: end function

Experimental Setup

- Wideband spectrum of 500 Δ Hz
- 5 sub-bands of 100 ΔHz
- Legit waveform = BPSK / QPSK
- Jamming signal = BPSK / QPSK
- SNR = 0 dB
- 1000 Monte-Carlo runs
- Test scenarios
 - Sub-band 1 and sub-band 5 has legit signal
 - Sub-band 5 has legit signal
 - Sub-band 1 has legit + stealthy jamming signal
 - Sub-band 1 has legit signal
 - Sub-band 5 has legit + stealthy jamming signal

Experimental Results

Test Case 1: SB-1 and SB-5 are used by BPSK signals and jammer target licit signal in SB-1.

Experimental Results

Test Case 2:

The licit users changed modulation scheme to QPSK in SB-1 and SB-5 and jammer target licit signal in SB-1.

Conclusion and Future Work

- A stealthy jammer detection algorithm was proposed for wide-band cognitive radios using compressed sensing.
- Performance gain compare to common methods of signal classification, which needs 10 dB to 20 dB for comparable classification rate [23].
- Proposed algorithm performs good within some limitations:
 - Plain database comparison.
 - Requirement to maintain databases.
- Future works may include:
 - Artificial Neural network classifiers
 - Dataset for PHY-Layer security.
 - Jammer with different capabilities.

Thanks for your Attention

Suggestions / Questions