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OUTLINE



TRANSFER LEARNING AS PART OF DEEP LEARNING 
• Transfer learning has been coexisted in 

Machine Learning (ML), Artificial 
Intelligence (AI), and Neural Network 
(NN).

• It is termed as knowledge transfer, meta
learning, inductive transfer, parameter 
transfer, life-long learning, or context-
sensitive learning [1].

• Transfer learning has the ability to 
extend what has been learned in one 
context to new contexts.
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* http://www.destination-
innovation.com/

• Deep learning (DL) has become a  
driving force of the current 
revolution in computing. 

• DL is the cornerstone everything 
from Self-Driving cars to language 
translation even generated art.

• Transfer learning is a technique to 
take the burden off from training 
deep neural networks (DNN).



GENERAL CONTEXT OF TRANSFER LEARNING
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TRANSFER LEARNING: USING “OFF-THE-SHELF” DCNN
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Idea: 
• Use outputs of one or more layers of a Deep Convolutional Neural Network (DCNN) trained on a 

different task as generic feature detectors. 
• Train a new shallow model on these features.
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TRANSFER LEARNING: USING “OFF-THE-SHELF” DCNN

Shallow classifier 
(SVM)

DCNN Features

The generic feature detectors
(Pre-trained DCNN layers)

• Works surprisingly well in practice!
• Surpassed or on par with state-of-the-art in 

several tasks

[3] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN 
features off-the-shelf: An astounding baseline for recognition, 
CVPRW ’14. 

Sample results from [3]: Oxford 102 flowers dataset.
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FUSION OF MULTI-MODEL CNN FEATURES

If a single modality CNN features provide improvement in classification 
accuracy,  the natural question arises asking:

• How about a fusion of multi-modality CNN features?
• Would they have clues that complement each other?
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• Fusion of multiple features and/or ensemble of 
classifiers are efficient techniques to achieve better results 
for applications like classification and recognition [4].

• Multi-modal learning has been shown to improve
learned representations in the unsupervised setting [16] 
and when used as a-priori known unrelated tasks [17]. 

CNN

The rationale: 
o All our knowledge is based upon experience. 
o What we call inferential knowledge, in which we go from less 

general to the more general. 
o General nature of the human brain, which is able to learn many 

different tasks (benefit from transfer learning).
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FUSION OF MULTIMODAL CNN FEATURES

General Overview of a Multi-modal 
Feature Representation 



FUSION OF MULTIMODAL CNN FEATURES

Step 1: Feature Extraction
Using multi-CNN models
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FUSION OF MULTIMODAL CNN FEATURES
Step 1: Feature Extraction

o AlexNet [17] is the winner of ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 2012.

o VGG-16 [18] is the winner of ILSVRC-2014 on localization 
task and runner-up on classification task.

o Inception-v3 [19] is an advanced version of the winner of 
ILSVRC-2014 classification task, the GoogLeNet.
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FUSION OF MULTIMODAL CNN FEATURES

The Average Time Taken by AlexNet, VGG16, and Inception-v3 as Feature Extractors. 

• The per sample feature extraction computational complexity is taken 
as average time taken for an image over 10,000 test samples of 
CIFAR10 using NVIDIA GeForce GTX 1060 6 GB and Intel(R) 
Core(TM) i7-4770 CPU @ 3.40 GHz.
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Step 1: Feature Extraction



Ω𝒊𝒊 = 𝟏𝟏
𝐄𝐄𝐅𝐅𝐢𝐢

× ∑𝒊𝒊=𝟏𝟏𝒎𝒎 𝟏𝟏
𝑬𝑬𝑭𝑭𝒊𝒊

.
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• The high-level feature representation is generated 
through similar operations like convolution, spatial 
sampling, and non-linear rectification.

• Thus, it is an effective way to take advantage of PCA
for dimensionality reduction and data transformation.

• Then, the individual generalized features are 
normalized based on their energy levels (i.e. the 
area under the curve of feature 𝐹𝐹𝑖𝑖 denoted as  𝐸𝐸𝐹𝐹𝑖𝑖) as 
given by 𝐹𝐹𝑖𝑖′ = Ωi ⋅ 𝐹𝐹𝑖𝑖, where the weight Ωi is       
computed as,

FUSION OF MULTIMODAL CNN FEATURES
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Step 2: Feature Transformation

𝜋𝜋



FUSION OF MULTIMODAL CNN FEATURES
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Concatenation: FFV

Product: FFV

Summation: FFV

Average: FFV

Max: FFV

Step 3: Feature Generalization with Fusion • Five different fusion rules are applied to 
form a generalized feature vector. 

(R1)

(R2)

(R3)

(R4)

(R5)
𝜋𝜋 − PCA space
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• A multi-class SVM is trained on the fused feature 
vectors (FFV) to achieve a multi-class linear classifier
C based on one-versus-rest (OVR) training 
procedure. 

• In this work, the Scikit-learn Python multi-class linear 
SVM using Crammer and Singer’s strategy with L2 
penalty and squared hinge loss is employed.

• The learning rate of this network is set to λ = 𝟐𝟐−𝟏𝟏𝟏𝟏.

FUSION OF MULTIMODAL CNN FEATURES
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EXPERIMENTAL RESULTS
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(a). Pascal VOC 2012 (riding horse, using computer, ridding bike), (b). 
Caltech101 (wrench, strawberry, wild cat), (c). Caltech256 (baseball bat, 
calculator, firetruck), (d). CIFAR10 (dog, horse, airplane), (e). CIFAR100 (insects, 
household furniture, large natural outdoor scenes)

Comparisons of the proposed feature embedding with other methods on five datasets (top-1 accuracy in %).



EXPERIMENTAL RESULTS
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Note that, for visualization easiness results of product-based fusion rule (R2) 
is omitted, since it is evident from the tabulated numerical results and the 
radar plot that its performance is the poorest among all the fusion 
techniques. 

2017 5TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, MONTREAL, CANADA, NOVEMBER 14-16, 2017

MIT767 is an additional 
experiment conducted 
after paper submission.



EXPERIMENTAL RESULTS
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MIT767 is an additional 
experiment conducted 
after paper submission.

Training time Vs Fusion rules



CONCLUSION
 Re-emphasize that the high-level features from DCNN provide abstract information 

about objects/scenes and such features are superior to the state-of-the-art low-level
local features.

 Taking advantage of complementary cues of multiple DCNN creates more 
generalized feature space that is somewhat appearance invariant and more 
discriminative of intra-class variations.

 Fusion of multiple deep ConvNet architecture’s high-level features enhances the 
classification accuracy than a single modality and produces very competitive results to 
fully trained DCNN and fusion of hand-crafted features as well.

 Features from distinct neural architectures yet posses complementary cues that can 
be integrated later to accurately classify visual objects or scenes.

 In the future, it would be interesting to consider such feature fusion for video content 
analysis (VCA), semantic segmentation, and medical image classification. 
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Thank you very much for your attention
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THE END
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