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Image and Video Transmission Systems

» Each frame is partitioned into non-overlapped blocks and each block is encoded/transmitted/packetized separately.

Typical Block Loss Pattern

» Transmission over an error-prone channel: undesired packet erasure leads to block loss.

Isolated Loss Consecutive Loss Random Loss
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Error Concealment (EC)

> Estimation of the lost blocks from the correctly received data.
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Inverse Problem Regularization

» Reconstructing the original signal x from its degraded observed version y

Degradation Matrix

Degraded Signal %
y = Hx Ty -

———> Diagonal matrix, whose diagonal entries are either 0 or 1 Image Impainting or Error Concealment (EC)
——> Random measurement matrix of size M x N (M < N) Compressed Sensing (CS)

—> Filtering operator: Image Deblurring

> Composite operator of blurring and downsampling Interpolation or Super Resolution problem

Recovering x from y

________________

Original Signal
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Fidelity Regularizer
» Our focus: a new regularization term based on joint local sparsity and non-local redundancies existing in the natural imza}ggs.



* Joint Sparse Representation Modeling

* Error Concealment based on self-similarity property of natural images and joint sparse representation

* Conclusion

3/16



Basic Idea

Original Image

X

There is a relationship, denoted by F,
between these subspaces.

Corrupted Image
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Lost block

Finding F between the patches in the
spatial domain is difficult.
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Joint Sparse Representation Modeling

Image patches are sparse with respect to certain dictionaries.
Mapping function F is found more accurately in the sparse representation domain.
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Joint Sparse Representation Modeling

Image patches are sparse with respect to certain dictionaries.
Mapping function F is found more accurately in the sparse representation domain.

X
D, a,

It is assumed that the sparse
representations are related to each
other via a linear mapping.
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Joint Sparse Representation Modeling using a Common Space

More efficient relationship is found by projection into a common space:
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Joint-Domain Dictionary Learning

One of the most flexible ways to discover the projection matrices is learning from training data:
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Simple Error Concealment Algorithm based on Joint Sparse Representation

Step 1: Find the sparse representation of the corrupted patch with respect to the dictionary D,,
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Step 2: Find the sparse representation of the original patch by projection into common subspace

a,=Fa,

Step 3: Obtain the concealed patch x=D,a,
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Enhanced Error Concealment Algorithm based on Joint Sparse Representation

and Self-similarity property of Natural Images

An additional regularization term is added to find more accurate sparse representation.

a, = arg;nin”y — Dya”Z + Allallo —p a, = argmin||y — Dya”z + 4llallp + 6[[Fa — Bll4 i
a 1 [
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This difference should be small.

» P is the true sparse representation of the patch.

» Since B is unknown, it is estimated by linear combination of the sparse representation vectors of similar patches
in the image.

Similar Patch Set
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Weights are calculated via computation of the Euclidean
distance between the patch and i-th similar patch




Enhanced Error Concealment Algorithm based on Joint Sparse Representation

and Self-similarity property of Natural Images

Recovery Algorithm

Step 1: Initialization

ag,o] = argmin||y — Dya“z + Al llo
a

x[0  m—p  BlO
Step 1: Iterative shrinkage algorithm
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I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math., vol. 57,
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Sequential Error Concealment

Sequential Error Concealment

» Thelost block is sequentially recovered.

» The reconstruction order depends on the available pixels in the neighbourhood of the lost block
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Experimental Results

Objective Comparison by Different EC Techniques for 30% Random Block Loss

* Image Size: 512 X 512 pixels * Lost Block Size: 8 X 8 pixesls
* PatchSize:5 X 5 pixels  Dictionary size: 25 X 256
EC Technique
Loss Pattern AVC POCS CAD VC MRF MKDE SLP LSR ALP JSR JSR+NL
Lena

orated PSNR  32.04 29.15 33.97 34.58 34.38 3455 33.72 34.45 3509 3508 35.78
MSSIM  0.976 0.950 0.982 0.986 0.985 0.985 0.983 0.983 0.989 0.987 0.989

Comsecutive PSNR 2884 2621 27.43 22.83 3109 30.57 2948 30.13 32.14 31.80  32.56
MSSIM 0,950 0.898 0.945 0.781 0.969 0964 0.959 0.952 0.975 0.973 0.976
PSNR 2892 26.94 2645 18.18 31.55 3145 30.62 31.35 32.61 31.91 32.38

Random

MSSIM 0.945 0.921 0915 0.576 0971 0.970 0.966 0.963 0.977 0.973 0.975

Reconstruction Time (Second) by Different EC Techniques for 30% Random Block Loss

EC Technique
Loss Pattern AVC POCS CAD VC MRF MKDE SLP LSR ALP JSR JSR+NL

Isolated 0.09 6.07 4.10 559 923 236 82 64 158 22 39
Consecutive 0.20 870 5.22 1079 16.73 363 126 126 281 41 58
Random 0.15 5.83 390 586 10.34 253 8 75 171 25 42
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Experimental Results

Visual comparison for Lena by different EC techniques for 30% random block loss
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Conclusions

» The error concealment problem is modelled in the form of invers problems.
» Two image priors are used to regularize the solution space:

= One prior is based on learning a mapping between the original image and corrupted patches
from training data sets

= Second prior is based on the self-similarities between image patches that existing in the natural
images.
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Experimental Results

Effect of mapping approach on the EC performance (PSNR) for THE IMAGE Lena at Different PLRs

PLR (%)
Mapping 10 20 30 40 50
JSR-C 38.41 34.96 32.31 30.13 27.28
JSR-D 38.31 34.87 32.23 30.05 27.26
JSR-I 37.35 33.88 31.16 29.24 27.24
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Applications of Sparse Signal Modeling Receiver-based Error Concealment based on Synthesis Sparse Recovery

One of the most flexible ways to discover F is learning from training data:
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