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Related Works: Hand Segmentation

• Color image
• Skin color

• Threshold in HSV space [1-4]

• Color histogram-based model [5]

• Gaussian mixture model [6]

• Limitation: other body parts, skin color objects, skin pigment difference, light 
condition variations

• Depth map
• Wristband [7-9]

• Random decision forest (RDF) [10-12]
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Related Works: Semantic Segmentation

• Random decision forest (RDF) [10-12]
• Accurate / robust

• Short processing time 

• Convolutional neural network [13-14]
• More accurate / robust

• Longer processing time 

(hard to achieve real-time)
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Abstract

• Goal: hand segmentation algorithm for hand-object interaction

• Input: only a depth map 
• To avoid the limitations of skin color-based methods

• Method: two-stage RDF
• 1st RDF: hand detection
• 2nd RDF: hand segmentation

• Result: high accuracy in short processing time (~10ms / frame)
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Method: Two-stage RDF 

• 1st RDF: detection on an entire depth map.

• 2nd RDF: segmentation in the detected region.

1st RDF: detection 2nd RDF: segmentation
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Method: RDF

• Consists of a collection of decision trees.

• Each tree is composed of a root node, splitting nodes, and leaf nodes.

Random decision Forest. Red: root nodes, Black: splitting nodes, Green: leaf nodes.
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Method: RDF (Training)

1. Select training data (partial data points in a set of images).

2. Learn a split function at each splitting node.
1. Generate possible candidates.

2. Select the candidate with the minimum loss.

3. Repeat (2) until a leaf node.

4. Store conditional probability at each leaf node.
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Method: RDF (Testing)

1. Each pixel enters root nodes in the forest.

2. Classify the pixel to child nodes until a leaf node.

3. Load the learned conditional probability.

4. Average the probabilities.

𝑝 ℎ 𝑥 =
1

T
෍

𝑇∈Τ

𝑝𝑇(ℎ|𝑙)

• ℎ: class, 𝑥: data, 𝑙: leaf node

• Τ: learned forest, T : the number of trees
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Method: Modified Bilateral Filter

• RDF’s prediction is independent for each pixel.

⇒ Stabilize by averaging the predictions in close distance. 

෤𝑝 ℎ 𝒙 =
1

𝑤
෍

𝒙𝑖∈Ω

𝑔𝑟 𝑫𝒙𝑖 −𝑫𝒙 𝑔𝑠 𝒙𝑖 − 𝒙 𝑝 ℎ 𝒙𝑖

• 𝑔𝑟(⋅), 𝑔𝑠(⋅): Gaussian functions

• 𝑫𝒙𝑖 −𝑫𝒙 : depth difference

• 𝒙𝑖 − 𝒙 : spatial distance
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Method: Decision Boundary 

• Typical boundary is 0.5 ⇒ Not the best parameter.

• Search with the step size of 0.01 exhaustively.
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Scores depending on the decision boundary. Left: RDF in the first stage. Right: RDF in the second stage.



Dataset: HOI dataset

• 27,525 pairs of depth maps and ground truth labels 

(training: 19,470, validation: 2,706, testing: 5,349)

• 6 people

• 21 different objects

• Available at https://github.com/byeongkeun-kang/HOI-dataset
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Result: Visual Comparison

Ground truth RDF [11, 12] RDF [11, 12]
+Adjustment

FCN-8s [13, 14] Proposed 
method
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Result: Quantitative Comparison

Method Score Processing
time (ms)Method Boundary Filter Precision Recall 𝐹1 score

RDF [1, 2]
0.50 - 38.1 91.2 53.7 6.7

0.78 - 54.5 72.7 62.3 6.7

FCN-32s [3, 4] 70.0 68.6 69.3 376

FCN-16s [3, 4] 68.0 72.2 70.1 376

FCN-8s [3, 4] 70.4 74.4 72.3 377

Proposed 
method

0.50, 0.50 - 59.2 77.4 67.1 8.9

0.50, 0.52 - 60.8 75.1 67.2 8.9

0.50, 0.52 11×11 62.9 75.6 68.7 10.7
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Result: Analysis of Accuracy and Efficiency
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Summary

• Task: hand segmentation for hand-object interaction

• Input: only a depth map

• Method: two-stage RDF

• Result: high accuracy in short processing time
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Questions
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