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The multi-armed bandit problem

Classical MAB [Lai and Robbins 85]:

System operates over epochs t = 1, 2, . . . (learning over time)

Set of arms: M = {1, . . . ,m}
Select arm at , receive reward X

(t)
at

Goal: Maximize E[
∑T

t=1 X
(t)
at ]

Distribution of X
(t)
i is fixed but unknown

Combinatorial MAB (CMAB) [Gai et al 12]:

Select St ⊂M
Reward is a combination of the rewards of arms in St

CMAB w Prob. Triggered Arms (CMAB-PTA) [Chen et al 16]

Select St ⊂M
τt ⊂M gets triggered

Reward is a combination of the rewards of arms in St ∪ τt
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Example: Influence maximization (IM)

Motivation: Viral marketing

Network: n nodes, m edges

Action: select k < n node seed set S

Influence spread model: Nodes in S can influence their neighbors, and
so on ... (influence probabilities unknown)
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Example: Influence maximization (IM)

In epoch t, select St based on G (V ,E , p̂)

X(i ,j): state of edge (i , j)

X(i ,j) = 1: influence successful (triggered)

X(i ,j) = 0: influence unsuccessful (not triggered)

Expected state:

µi ,j := E[X(i ,j)] = pi ,j [unknown]
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Example: Influence maximization (IM)

Set of actions:

S = {All k out of n combinations of nodes}

Set of triggered edges:

τ

Reward:

R(S ,X, τ) = num. influenced nodes

= influence spread
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Goal

Maximize the cumulative expected reward by epoch T , for all T :

maximize E

[
T∑
t=1

R(St ,X
(t), τt)

]

Need to learn pi ,js!
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CMAB-PTA

Arms and actions

X
(t)
i : state of arm i at epoch t

X(t) = (X
(t)
1 , . . . ,X

(t)
m ): state vector [not known beforehand]

X(t) ∼ D [Unknown, support [0, 1]m]

Expected state: µi = E[X
(t)
i ]

Expectation vector: µ = (µ1, . . . µm)

Set of actions: S
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CMAB with PTAs

What happens in epoch t?

Select an action: St ∈ S
Arms get probabilistically triggered: τt ∼ Dtrig(St ,X

(t)) [τt ⊂M]

Receive a non-negative reward: R(St ,X
(t), τt)

Observe states of triggered arms: X
(t)
i , i ∈ τt

Assumption:
E[R(S ,X, τ)] = rµ(S) (expected reward only depends on µ and S)
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Approximation algorithms

Problem is NP hard, but approximations exist! [Vazirani 2001]

Optimal expected reward: r∗µ = maxS∈S rµ(S)

(α, β)-approximation algorithm

action SO : Pr(rµ̂(SO) ≥ αr∗µ̂) ≥ β
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Regret

Regret by epoch T :

Regµ,α,β(T ) = Tαβr∗µ︸ ︷︷ ︸
(α, β) oracle

−E

[
T∑
t=1

rµ(St)

]

maximize E

[
T∑
t=1

rµ(St)

]
u minimize Regret
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Assumptions on the expected reward

Assumption (Chen 2016 - bounded smoothness)

If maxi∈{1,...,m} |µi − µ′i | ≤ ∆, ∀S ∈ S, then

|rµ(S)− rµ′(S)| ≤ f (∆)

f : continuous, strictly increasing bounded smoothness function
(f (0) = 0).

Assumption (Chen 2016 - monotonicity)

If for all arms i ∈ {1, . . . ,m}, µi ≤ µ′i , then we have

rµ(S) ≤ rµ′(S), ∀S ∈ S
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Positive arm triggering probabilities (CMAB-PTA+)

pSi : minimum probability that action S triggers arm i

CMAB-PTA: pSi can be zero

CMAB-PTA+: pSi ≥ p∗ > 0

Examples of CMAB-PTA+:

Influence maximization over strongly connected graphs

Recommender systems with word of mouth effect
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Our contributions

Our CMAB PTAs CMAB
work [Chen 16] [Kveton 15]

[Wang 17] [Chen 16b]
Gap-dependent regret O(1) O(logT ) O(logT )

Gap-independent regret O(
√
T ) O(

√
T logT ) O(

√
T logT )

Strictly positive ATPs Yes No -

First to show bounded regret in CMAB with PTAs
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Bounded regret in other bandits

A negative result:

[Lai and Robbins 85]: regret Ω(logT ) (arms do not provide
information about each other)

Positive results:

[Mersereau 09], [Atan 15]∗, [Akbarzadeh 16]∗∗: arm rewards are
related through parameter(s) that can be learned by selecting any
arm.

*O. Atan, C. Tekin, M. van der Schaar “Global bandits”, AISTATS 2015

**N. Akbarzadeh, C. Tekin “Gambler’s ruin bandit problem”, Allerton 2016
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Greedy policy for CMAB-PTA+ (pure exploitation)

1: Maintain µ̂ = (µ̂1, . . . , µ̂m) (sample mean estimate of µ)
2: while t ≥ 1 do
3: Call the (α, β)-approximation algorithm with µ̂ as input to get St

4: Select action St , observe X
(t)
i ’s for i ∈ τt and collect the reward R

5: for i ∈ τt do
6: Ti = Ti + 1

7: µ̂i = µ̂i +
X

(t)
i −µ̂i
Ti

8: end for
9: t = t + 1

10: end while

November 14, 2017 15 / 22



Key lemma

Lemma (Sufficient arm observations)

For any learning algorithm, η ∈ (0, 1) and for all t ≥ t ′ := 4c2/e2, where
c := 1/(p∗(1− η))2, we have

Pr

 ⋃
i∈{1,...,m}

{
T t+1
i ≤ ηp∗t

} ≤ m

t2
.

t ′: turning point

Num. observations of each arm is linear in t after the turning point
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Gap-dependent regret

Theorem

Reggreedy(T ) = O(1)

Finite time version: ∀T ≥ 1

Reggreedyµ,α,β(T ) ≤ ∇max inf
η∈(0,1)

(
dt ′e+

mπ2

3

(
1 +

1

2δ2

)
+ 2m

(
1 +

1

2δ2ηp∗

))

δ := f −1(∇min/2), t ′ := 4c2/e2 and c := 1/(p∗(1− η))2

∇min = minS:∇S>0∇S where

∇S = αr∗µ − rµ(S) [suboptimality gap]
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Gap-independent regret

Theorem

Reggreedy
µ,α,β (T ) = O(

√
T )

Finite time version: ∀T ≥ 1

Reggreedy
µ,α,β (T ) ≤ inf

η∈(0,1)

(
dt ′e∇max + 4γm

[
2
( π

2ηp∗

)1/2
+ 3

]
T 1/2

)

where t ′ := 4c2/e2 and c := 1/(p∗(1− η))2.

Holds when the bounded-smoothness function is f (x) = γx where
γ > 0 and ω ∈ (0, 1]

Matches with the lower bound in [Wang 17] (tight). Upper bound in
[Wang 17] is Õ(

√
T )
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Movie recommendation example

Movielens dataset

Weighted bipartite graph G = (L,R,E , p)

L: 50 movies, R: 881 users, E : movie-user
pairs

Action: select k movies

p
(i,j)
S : probability that action S triggers

edge (i , j)

p
(i,j)
S = 1 for outgoing edges of nodes in S

> p∗ > 0 otherwise [word of mouth]

pi,j : probability user j watches movie i
(after he/she learns about the movie)
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Movie recommendation example
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Reported regrets are normalized, i.e., divided by the αβ fraction of
the optimal reward

Learning is faster when p∗ or k is large
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Conclusion

Considered a special case of CMAB with PTAs.

Proved that the gap-dependent regret is O(1)
Proved that worst-case regret is O(

√
T )

Recent extensions

O(1) gap-dependent and O(
√
T ) gap-independent regrets for

Combinatorial Upper Confidence Bound (CUCB) and Combinatorial
Thompson Sampling (CTS) [they both explore and exploit]
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