Combinatorial Multi-armed Bandit Problem with Probabilistically Triggered Arms - A Case with Bounded Regret

A. Omer Saritac, Cem Tekin
Bilkent University
Electrical and Electronics Engineering Department

November 14, 2017

The multi-armed bandit problem

Classical MAB [Lai and Robbins 85]:

- System operates over epochs $t=1,2, \ldots$ (learning over time)
- Set of arms: $\mathcal{M}=\{1, \ldots, m\}$
- Select arm a_{t}, receive reward $X_{a_{t}}^{(t)}$
- Goal: Maximize $\mathbb{E}\left[\sum_{t=1}^{T} X_{a_{t}}^{(t)}\right]$
- Distribution of $X_{i}^{(t)}$ is fixed but unknown

The multi-armed bandit problem

Classical MAB [Lai and Robbins 85]:

- System operates over epochs $t=1,2, \ldots$ (learning over time)
- Set of arms: $\mathcal{M}=\{1, \ldots, m\}$
- Select arm a_{t}, receive reward $X_{a_{t}}^{(t)}$
- Goal: Maximize $\mathbb{E}\left[\sum_{t=1}^{T} X_{a_{t}}^{(t)}\right]$
- Distribution of $X_{i}^{(t)}$ is fixed but unknown

Combinatorial MAB (CMAB) [Gai et al 12]:

- Select $S_{t} \subset \mathcal{M}$
- Reward is a combination of the rewards of arms in S_{t}

The multi-armed bandit problem

Classical MAB [Lai and Robbins 85]:

- System operates over epochs $t=1,2, \ldots$ (learning over time)
- Set of arms: $\mathcal{M}=\{1, \ldots, m\}$
- Select arm a_{t}, receive reward $X_{a_{t}}^{(t)}$
- Goal: Maximize $\mathbb{E}\left[\sum_{t=1}^{T} X_{a_{t}}^{(t)}\right]$
- Distribution of $X_{i}^{(t)}$ is fixed but unknown

Combinatorial MAB (CMAB) [Gai et al 12]:

- Select $S_{t} \subset \mathcal{M}$
- Reward is a combination of the rewards of arms in S_{t}

CMAB w Prob. Triggered Arms (CMAB-PTA) [Chen et al 16]

- Select $S_{t} \subset \mathcal{M}$
- $\tau_{t} \subset \mathcal{M}$ gets triggered
- Reward is a combination of the rewards of arms in $S_{t} \cup \tau_{t}$

Example: Influence maximization (IM)

- Motivation: Viral marketing
- Network: n nodes, m edges
- Action: select $k<n$ node seed set S
- Influence spread model: Nodes in S can influence their neighbors, and so on ... (influence probabilities unknown)

$$
k=1 \quad G(V, E, p)
$$

Example: Influence maximization (IM)

In epoch t, select S_{t} based on $G(V, E, \hat{p})$

- $X_{(i, j)}$: state of edge (i, j)
- $X_{(i, j)}=1$: influence successful (triggered)
- $X_{(i, j)}=0$: influence unsuccessful (not triggered)

Expected state:

- $\mu_{i, j}:=\mathbb{E}\left[X_{(i, j)}\right]=p_{i, j}$ [unknown]

Example: Influence maximization (IM)

Set of actions:

$\mathcal{S}=\{$ All k out of n combinations of nodes $\}$
Set of triggered edges:

$$
\tau
$$

Reward:

$$
\begin{aligned}
R(S, \mathbf{X}, \tau) & =\text { num. influenced nodes } \\
& =\text { influence spread }
\end{aligned}
$$

Goal

Maximize the cumulative expected reward by epoch T, for all T :

$$
\text { maximize } \mathbb{E}\left[\sum_{t=1}^{T} R\left(S_{t}, \mathbf{X}^{(t)}, \tau_{t}\right)\right]
$$

- Need to learn $p_{i, j} s$!

CMAB-PTA

Arms and actions

- $X_{i}^{(t)}$: state of arm i at epoch t
- $\mathbf{X}^{(t)}=\left(X_{1}^{(t)}, \ldots, X_{m}^{(t)}\right)$: state vector [not known beforehand]
- $\mathbf{X}^{(t)} \sim D$
- Expected state: $\mu_{i}=\mathbb{E}\left[X_{i}^{(t)}\right]$
- Expectation vector: $\boldsymbol{\mu}=\left(\mu_{1}, \ldots \mu_{m}\right)$
- Set of actions: \mathcal{S}

CMAB with PTAs

What happens in epoch t ?

- Select an action: $S_{t} \in \mathcal{S}$
- Arms get probabilistically triggered: $\tau_{t} \sim D^{\text {trig }}\left(S_{t}, \mathbf{X}^{(t)}\right) \quad\left[\tau_{t} \subset \mathcal{M}\right]$
- Receive a non-negative reward: $R\left(S_{t}, \mathbf{X}^{(t)}, \tau_{t}\right)$
- Observe states of triggered arms: $X_{i}^{(t)}, i \in \tau_{t}$

Assumption:
$\mathbb{E}[R(S, \mathbf{X}, \tau)]=r_{\mu}(S)$ (expected reward only depends on μ and S)

Approximation algorithms

Problem is NP hard, but approximations exist! [Vazirani 2001]

- Optimal expected reward: $r_{\mu}^{*}=\max _{S \in \mathcal{S}} r_{\mu}(S)$
- (α, β)-approximation algorithm

$$
\text { action } S^{O}: \operatorname{Pr}\left(r_{\hat{\mu}}\left(S^{O}\right) \geq \alpha r_{\hat{\mu}}^{*}\right) \geq \beta
$$

Regret

Regret by epoch T :

$$
\begin{aligned}
& \operatorname{Reg}_{\mu, \alpha, \beta}(T)=\underbrace{T \alpha \beta r_{\mu}^{*}}_{(\alpha, \beta) \text { oracle }}-\mathbb{E}\left[\sum_{t=1}^{T} r_{\mu}\left(S_{t}\right)\right] \\
& \text { maximize } \mathbb{E}\left[\sum_{t=1}^{T} r_{\mu}\left(S_{t}\right)\right] \approx \text { minimize Regret }
\end{aligned}
$$

Assumptions on the expected reward

Assumption (Chen 2016 - bounded smoothness)

If $\max _{i \in\{1, \ldots, m\}}\left|\mu_{i}-\mu_{i}^{\prime}\right| \leq \Delta, \forall S \in \mathcal{S}$, then

$$
\left|r_{\mu}(S)-r_{\mu^{\prime}}(S)\right| \leq f(\Delta)
$$

- f : continuous, strictly increasing bounded smoothness function $(f(0)=0)$.

Assumption (Chen 2016 - monotonicity)

If for all arms $i \in\{1, \ldots, m\}, \mu_{i} \leq \mu_{i}^{\prime}$, then we have

$$
r_{\mu}(S) \leq r_{\mu^{\prime}}(S), \forall S \in \mathcal{S}
$$

Positive arm triggering probabilities (CMAB-PTA+)

- p_{i}^{S} : minimum probability that action S triggers arm i
- CMAB-PTA: p_{i}^{S} can be zero
- CMAB-PTA ${ }^{+}: p_{i}^{S} \geq p^{*}>0$

Examples of CMAB-PTA ${ }^{+}$:

- Influence maximization over strongly connected graphs
- Recommender systems with word of mouth effect

Our contributions

Our			
work	CMAB PTAs [Chen 16] [Wang 17]	CMAB [Kveton 15] [Chen 16b]	
Gap-dependent regret	$O(1)$	$O(\log T)$	$O(\log T)$
Gap-independent regret	$O(\sqrt{ })$	$O(\sqrt{T \log T})$	$O(\sqrt{T \log T})$
Strictly positive ATPs	Yes	No	-

- First to show bounded regret in CMAB with PTAs

Bounded regret in other bandits

A negative result:

- [Lai and Robbins 85]: regret $\Omega(\log T)$ (arms do not provide information about each other)

Positive results:

- [Mersereau 09], [Atan 15]*, [Akbarzadeh 16]**: arm rewards are related through parameter(s) that can be learned by selecting any arm.

[^0]
Greedy policy for CMAB-PTA+ (pure exploitation)

1: Maintain $\hat{\boldsymbol{\mu}}=\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{m}\right)$ (sample mean estimate of $\boldsymbol{\mu}$)
2: while $t \geq 1$ do
3: \quad Call the (α, β)-approximation algorithm with $\hat{\mu}$ as input to get S_{t}
4: Select action S_{t}, observe $X_{i}^{(t)}$'s for $i \in \tau_{t}$ and collect the reward R
5: \quad for $i \in \tau_{t}$ do
6: $\quad T_{i}=T_{i}+1$
7: $\quad \hat{\mu}_{i}=\hat{\mu}_{i}+\frac{x_{i}^{(t)}-\hat{\mu}_{i}}{T_{i}}$
8: end for
9: $\quad t=t+1$
10: end while

Key lemma

Lemma (Sufficient arm observations)

For any learning algorithm, $\eta \in(0,1)$ and for all $t \geq t^{\prime}:=4 c^{2} / e^{2}$, where $c:=1 /\left(p^{*}(1-\eta)\right)^{2}$, we have

$$
\operatorname{Pr}\left(\bigcup_{i \in\{1, \ldots, m\}}\left\{T_{i}^{t+1} \leq \eta p^{*} t\right\}\right) \leq \frac{m}{t^{2}} .
$$

- t^{\prime} : turning point
- Num. observations of each arm is linear in t after the turning point

Gap-dependent regret

Theorem

$$
\operatorname{Reg}^{\text {greedy }}(T)=O(1)
$$

Finite time version: $\forall T \geq 1$
$\operatorname{Reg}_{\mu, \alpha, \beta}^{\text {greedy }}(T) \leq \nabla_{\max } \inf _{\eta \in(0,1)}\left(\left\lceil t^{\prime}\right\rceil+\frac{m \pi^{2}}{3}\left(1+\frac{1}{2 \delta^{2}}\right)+2 m\left(1+\frac{1}{2 \delta^{2} \eta p^{*}}\right)\right)$

- $\delta:=f^{-1}\left(\nabla_{\text {min }} / 2\right), t^{\prime}:=4 c^{2} / e^{2}$ and $c:=1 /\left(p^{*}(1-\eta)\right)^{2}$
- $\nabla_{\text {min }}=\min _{s: \nabla_{s}>0} \nabla_{s}$ where

$$
\nabla_{S}=\alpha r_{\mu}^{*}-r_{\mu}(S) \text { [suboptimality gap] }
$$

Gap-independent regret

Theorem

$$
\operatorname{Reg}_{\mu, \alpha, \beta}^{\text {greedy }}(T)=O(\sqrt{T})
$$

Finite time version: $\forall T \geq 1$

$$
\operatorname{Reg}_{\mu, \alpha, \beta}^{\text {greedy }}(T) \leq \inf _{\eta \in(0,1)}\left(\left\lceil t^{\prime}\right\rceil \nabla_{\max }+4 \gamma m\left[2\left(\frac{\pi}{2 \eta p^{*}}\right)^{1 / 2}+3\right] T^{1 / 2}\right)
$$

where $t^{\prime}:=4 c^{2} / e^{2}$ and $c:=1 /\left(p^{*}(1-\eta)\right)^{2}$.

- Holds when the bounded-smoothness function is $f(x)=\gamma x$ where $\gamma>0$ and $\omega \in(0,1]$
- Matches with the lower bound in [Wang 17] (tight). Upper bound in [Wang 17] is $\tilde{O}(\sqrt{T})$

Movie recommendation example

- Movielens dataset
- Weighted bipartite graph $G=(L, R, E, p)$
- $L: 50$ movies, R : 881 users, E : movie-user pairs
- Action: select k movies
- $p_{S}^{(i, j)}$: probability that action S triggers edge (i, j)
$p_{S}^{(i, j)}=1$ for outgoing edges of nodes in S $>p^{*}>0$ otherwise [word of mouth]

- $p_{i, j}$: probability user j watches movie i (after he/she learns about the movie)

Movie recommendation example

- Reported regrets are normalized, i.e., divided by the $\alpha \beta$ fraction of the optimal reward
- Learning is faster when p^{*} or k is large

Conclusion

- Considered a special case of CMAB with PTAs.
- Proved that the gap-dependent regret is $O(1)$
- Proved that worst-case regret is $O(\sqrt{T})$

Recent extensions

- $O(1)$ gap-dependent and $O(\sqrt{T})$ gap-independent regrets for Combinatorial Upper Confidence Bound (CUCB) and Combinatorial Thompson Sampling (CTS) [they both explore and exploit]

References

[Chen 16] Chen, Wei, et al. "Combinatorial multi-armed bandit and its extension to probabilistically triggered arms." The Journal of Machine Learning Research 17.1 (2016): 1746-1778.
[Chen 16b] Chen, Wei, et al. "Combinatorial multi-armed bandit with general reward functions." Advances in Neural Information Processing Systems. 2016. [Kveton 15] Kveton, Branislav, et al. "Combinatorial cascading bandits." Advances in Neural Information Processing Systems. 2015.
[Vazirani 01] Vazirani, Vijay V. Approximation algorithms. Springer Science \& Business Media, 2001

[^0]: *O. Atan, C. Tekin, M. van der Schaar "Global bandits", AISTATS 2015
 **N. Akbarzadeh, C. Tekin "Gambler's ruin bandit problem", Allerton 2016

