
1

2017/11/14

1

Deriving 3D Shape Properties by Using 
Backward Wavelet Remesher

Hao-Chiang Shao and Wen-Liang Hwang

Inst. Information Science, Academia Sinica, Taiwan

mailto: shao.haochiang@gmail.com

Motivation: Brain Image Atlasing
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Motivation:
How to derive a 3D average?

+ ?
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Motivation:

1. How to derive a 3D standard average?

2. How to construct a 2D+Z deformation field?  

3. How to define 3D boundary condition?

 Analyze 3D shape properties first.
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 Schizophrenia VS Hippocampus

Nain et al., “Multiscale 3-d shape representation and segmentation using spherical wavelets”, 
IEEE Trans. Med. Imaging, pp.598-618, vol.26(4), 2007.
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3D Shape Analysis: 
An Example (Nain et al.)
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3D Shape Analysis: 
An Example (Nain et al.)
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Our Design Goal & Our Prototype

 Shao et al., “A backward wavelet remesher for level of detail control and scalable 
coding”, IEEE ICIP 2014. 8
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Concept: 
Coarse-to-fine (backward) wavelet representation
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Concept: 
Coarse-to-fine (backward) wavelet representation
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Concept: 
Coarse-to-fine (backward) wavelet representation
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 1D DWT
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Coarse-to-fine (backward) 
wavelet representation
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 Forward VS inverse transform

 Example: 
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Coarse-to-fine (backward)
wavelet representation

Multiresolution Analysis for Surfaces

1j
mq

j
kq

j
lq

j
mw

1~ j
mq

j
m

j
m

j
m wqq   11 ~

M. Lounsbery, T. DeRose, and J. Warren, “Multiresolution analysis for surfaces of arbitrary 
topological type”, ACM Transactions on Graphics, 16 (1997), pp. 34-73.
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 Displacement Vector vs. Lazy Wavelet Structure
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Multiresolution Analysis for Surfaces
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N. Dyn, D. Levine, and J. A. Gregory, “A butterfly subdivision scheme for surface interpolation with 
tension control,” ACM transactions on Graphics (TOG), vol. 9, no. 2, pp. 160–169, 1990.

 What will happen if butterfly subdivision scheme is 
adopted?

Multiresolution Analysis for Surfaces
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N. Dyn, D. Levine, and J. A. Gregory, “A butterfly subdivision scheme for surface interpolation with 
tension control,” ACM transactions on Graphics (TOG), vol. 9, no. 2, pp. 160–169, 1990.

 What will happen if butterfly subdivision scheme is 
adopted?
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Coarse-to-fine (backward)
wavelet representation
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Experiment Results
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W5 W6 W7

Multiresolution analysis on Olfactory 
Glomerulus models

 Based on multiresolution analysis, we can conditionally
achieve registration, morphing, and model-averaging in 
a coarse-to-fine manner.

2017/11/14
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Multiresolution analysis on Olfactory 
Glomerulus models

2017/11/14

 Regions with high structural variability are highlighted in yellow.

Multiresolution analysis on Olfactory 
Glomerulus models

2017/11/14
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Concluding Remarks

 A backward coarse-to-fine method.

 Tiling-invariant BWR acts as a transformation that can 
convert input meshes into a standard reference domain.

 Simple: remeshing only.

 Suitable for mesh registration/editing/warping, and also 
applicable to biomedical applications, such as tracking 
deformations of a 3D beating heart model.

2017/11/14

2017/11/14
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Thank you.
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