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Outlines

* Background about Sparse Approximation(spA).



What is SpA ?

e SpA is the problem of approximating a signal (vector) with the
best linear m combination of elements from a redundant
dictionary. Greedy is Good [Joel A. Tropp, 2006]
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Sparse Approximation Review

e Consider the linear system of Equations

-
| = Ax +z2
M y ,,
Yy € CM = / 3 \Z = C]\/[
\ X €
Where:

A : represents the Sparsifying Dictionary.
y : represents the Data (MD).

X :represents the Original Signal.

z : Additive Noise.

e Two main approaches have been proposed in the
literature to solve the spA problems; specifically,

d I{ — minimization.
J Greedy algorithms.




Sparse Approximation Review

1. Convex optimization: [;-minimization.

min [ x|jo st ||y —AX 12 < €
xeCN
2. Greedy algorithms: One of the most widely
greedy algorithms is the Orthogonal Matching
Pursuit (OMP)

Other Algorithms:

x = OMP (y.A,stopping criterion) | 4s°

e StOMP

« ROMP
Orthogonal Matching Pursuit Algorithm e CoSaMP
e IHT

OMP: Selects the most corr. columns of ( A) withthe MD (y).
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e Motivation and Related Work.



Motivation and Related Work

e Highly dispersive comm. Channels are ch’c by IR’s that span tens-hundreds
of symbol periods.

* Verylong equalizers have to be employed at the Rx to mitigate the
resulting sever ISI. [Bingham, 1990].

e Complexity of finite-impulse-response (FIR) equalizers is proportional to

the square of the number of nonzero taps in the filter.
A

vxlw,)vx | H,) 1

DENSE EQUALIZER CHOOSE STRONGEST TAPS

v
REDESIGN SPARSE EQUALIZER

FIR filters with non-consecutive non-zero taps typically
referred to as sparse filters

‘Strongest tap selection’ method [elvasalo, 2007] [Melvasalo, 2010] [Gomaa, 2012]
1. Design large length dense filter and choose a subset of strongest taps.
2.  Design sparse filter on the selected locations.
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 Our Objectives



Our Contributions,

* Designing a general framework that transforms the problem
of design of sparse linear equalizers (LEs) into the problem of
sparsest approximation of a vector in different dictionaries.



Outlines

e Sparse FIR LE problem formulation



Sparse Equalization

 We consider a general case of a digital communication system with n;
inputs and n, outputs.
e Thesamples at the jt* output (1 <jt* <n,)

p(1:3)
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* Grouping over a block of N¢ symbol periods,

VicheN;+1 = HXpoko— Ny —p+1 + Bpe— N, 41
* For SISO-LEs (Error Signal):
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Sparse FIR SISO-LEs
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O WH : Filter taps.

O €,:Signal Energy.
Ur,= R;,} * 1, , where 1, is all zero vector except the (A+1) entry, where this entry is 1.

QwHiR,,

R,, : Equalizer Coeff., Cross-Corr. Matrix, Output Auto-corr. Matrix.



Proposed sparse approximation framework

» We provide a general framework for designing sparse FIR LEs and
equalizers that can be considered as the problem of sparse
approximation using different dictionaries. Mathematically, this
framework poses the design problem as follows:

w, = argmin ||wl|, subject to [|A (Pw — b)||§ R Bg

weC™ f

where @ is the dictionary that will be used to sparsely
approximate w, while A is a known matrix and b is a
known data vector, both of which change depending upon the
sparsifying dictionary 9.



Exampie:

Sparse FIR SISO-LEs
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Table I

EXAMPLES OF DIFFERENT SPARSIFYING DICTIONARIES.

Cholesky Factorization

Eigen Decomposition

R,,=LL" or R,, = PAP"
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To this end ?!

v We have shown that the problem of designing sparse FIR equalizers
can be cast into one of sparse approximation of a vector by a fixed
dictionary. The general form of this problem is given by slide 23.

v Which Sparsifying dictionary results in the sparsest design??

Our next challenge is to determine
the best sparsifying dictionary for use in
our framework.

» We know from the sparse approximation
literature that the sparsity of the OMP
solution tends to be inversely proportional to
the worst-case coherence u(®).




Worst-Case Coherence u(®) Analysis

 Once again, the sparsity of the OMP solution tends to be
inversely proportional to the worst-case coherence

p(P) = max iy
vy Hq‘i—;”g‘l(ﬁjHQ

e Orthogonal Matching Pursuit (OMP) and like methods will
estimate the optimum representation if u(@) < 1 .[Tropp, 2006]

e Our Approach in investigating u(®) ?
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Worst-Case Coherence of R,,,, u(R
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Worst-Case Coherence of R,,,, u(R

yy):

R,=HH"+ LT

SNR
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RyyZT()epli'[Z([ ro M ... T 0 ... 0]):

To get the worst CIR taps which result in the worst-case coherence:
v (&
max Z \hihi_y| st Z hi]? = 1.
i=1 i=0
max ‘hHRh| s.t. h'h =1 :

The solution of the above optimization problem is:
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Worst-Case Coherence of R, Factors

> It is important to note here that the other dictionaries, which
result from decomposing Ry, and R, ,, can be considered as
square roots of them in the spectral-norm sense. For example:

)

R, | = |LuLf| < |lz7
2 S 2 712
Ty

R;| =|Uusp;Uf| <|pY*U!
2 - 2 | 2

» Through simulation, we show that the coherence of the
factors of R, is less than that of u(R,,,).



Can we do better?

WE GAN'DO
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Reduced-Complexity Design

The proposed designs for Sparse FIR LEs involve Cholesky
factorization and/or eigen decomposition, whose computational
costs could be large for channels with large delay spreads.

For a Toeplitz matrix, the most efficient algorithms for Cholesky
factorization are Levinson or Schur algorithms, which involve
0(M?) computations, where M is the matrix dimension.

In contrast, since a circulant matrix is asymptotically equivalent to
a Toeplitz matrix, for reasonably large dimension, the eigen
decomposition of a circulant matrix can be computed efficiently
using the fast Fourier transform (FFT) and its inverse with only
O(Mlog(M)) operations.

By using this asymptotic equivalence between Toeplitz and
circulant matrices, all computations needed for Ry, factorization

can be done efficiently with the FFT and inverse FFT. In addition,
direct matrix inversion can be avoided.



Reduced-Complexity Design

» A circulant matrix, C, has the discrete Fourier transform (DFT) basis
vectors as its eigenvectors and the DFT of its first column as its
eigenvalues.

» An M x M circulant matrix € can be decomposed as

1 H
C :M(FMFCFM)

» The autocorrelation matrix R,, is computed as:

_ o 1
R,, = EYy,u, + -5
- ) STATR
R —

yy o)
» To approximate R, as a circulant matrix, we assume that {yy} is

cyclic. Hence, E{y; Vi } can be approximated as a time-averaged
autocorrelation function as follows:

Ij\.Tf



Reduced-Complexity Design: R,
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Reduced-Complexity Design: R,
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Outlines

e Selected Results.



Performance of circulant approximation based approach
for UPDP channel with v = 5 and input SNR = 30dB.

Feed-Forward Filter taps weights of single realizations of the MMSE
and the equivalent circulant—approx. based solution for SISO-LE with SNR = 30dB
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Worst-case coherence for R, and its factors L and D> U v
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approximation for D2 Uy (i.e, Q")and Ry, (i.e,, R,y = QQ™).
J UPDP withv = 8 and Ny = 80.



Active taps Percentage versus Performance Loss: Vech-A-PDP (LEs)

ITU-Vehicular—A Channel Model(6 non—zero paths)-SNR,dB = 10, 30, 5000 Channel realization
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JAllowing for 0.25 dB performance loss results in a significant

reduction in the number of the total filter taps

( 65% reduction) ©©



SER versus SNR (LEs)
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e Conclusions



Conclusions

» Dramatic complexity reduction is achieved at a small
performance loss compared to the conventional MMSE
non-sparse FIR equalizer design.

» Sparse FIR equalizers enjoy more rapid taps weight
adaptation to changing to channel condition which
support higher mobile velocities.

» Based on the asymptotic equivalence of Toeplitz and
circulant matrices, we provide reduced-complexity
designs, where matrix factorizations can be carried out
efficiently using the FFT and inverse FFT.

» The dictionary with the smallest coherence gives the
sparsest filter design.
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