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What is SpA ? 

• SpA  is the problem of approximating a signal (vector) with the 
best linear 𝑚  combination of elements from a redundant 
dictionary. Greedy is Good [Joel A. Tropp, 2006] 

• A signal is K-sparse when it has at most k non-zeros  

 
 
 

• Compressible signal:  well approximated by 
sparse signal 

Threshold 



Sparse Approximation Review 

• Consider the linear system of Equations 
 
 
 
 
 
 

• Two main approaches have been proposed in the 
literature to solve the spA problems; specifically, 

                            𝒍𝟏 − 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦. 
 Greedy algorithms. 
 

Where: 
    A : represents the Sparsifying Dictionary. 
    y : represents the Data (MD). 
    x  : represents  the Original Signal.  
    z  : Additive Noise. 
 



Sparse Approximation Review 

1. Convex optimization:  𝑙1-minimization.   
 
 

2. Greedy algorithms: One of the most widely 
greedy algorithms is the Orthogonal Matching 
Pursuit (OMP) 

 
               
                          
 
 Orthogonal Matching Pursuit Algorithm  

OMP: Selects the most corr.  columns  of  ( A ) with the MD ( y ).  

Other Algorithms: 
• LASSO 
• OLS 
• StOMP 
• ROMP 
• CoSaMP 
• IHT 
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Motivation and  Related Work 
• Highly dispersive comm. Channels are ch’c by IR’s that span tens-hundreds 

of symbol periods. 
• Very long equalizers have to be employed at the Rx to mitigate the 

resulting sever ISI. [Bingham, 1990]. 
• Complexity of  finite-impulse-response (FIR) equalizers is proportional to 

the square of the number of nonzero taps in the filter. 
 

 
 
 
  FIR filters with non-consecutive non-zero taps typically   
  referred to as sparse filters 

DENSE EQUALIZER CHOOSE STRONGEST TAPS 
REDESIGN SPARSE EQUALIZER 

‘Strongest tap selection’ method [Melvasalo, 2007] [Melvasalo, 2010] [Gomaa, 2012] 
1. Design large length dense filter and choose a subset of strongest taps. 
2. Design sparse filter on the selected locations. 
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Our Contributions, 
• Designing a general framework that transforms the problem 

of design of sparse linear equalizers (LEs) into the problem of 
sparsest approximation of a vector in different dictionaries. 
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Sparse Equalization 
• We consider a general case of a digital communication system with  𝑛𝑖  
     inputs and  𝑛𝑜 outputs. 
• The samples at  the 𝑗𝑡𝑡 output  (1 ≤ jth  ≤ no)  

 
 
 
 

• Grouping  over a block of  𝑁𝑓 symbol periods, 
 

 
• For SISO-LEs (Error Signal): 

 
 

 
 

 



Sparse FIR SISO-LEs 

 𝑾𝑯 : Filter taps.  
 𝝐𝐱: 𝐒𝐒𝐒𝐒𝐒𝐒 𝐄𝐄𝐄𝐄𝐄𝐄. 
 𝒓∆ = 𝑹𝒚𝒚−𝟏 ∗ 𝟏∆ , where 𝟏∆  is all zero vector except the (∆+1) entry, where this entry is 1. 
 𝑾𝑯,𝑹𝒚𝒚,𝑹𝒚𝒚 : Equalizer Coeff., Cross-Corr. Matrix, Output Auto-corr. Matrix. 
 



Proposed sparse approximation framework 
We provide a general framework for designing  sparse  FIR LEs and 

equalizers  that can be considered as the problem of sparse 
approximation using different dictionaries. Mathematically, this 
framework poses the design problem as follows: 



Example:  
                    Sparse FIR SISO-LEs 



To this end ?!  
We have shown that the problem of designing sparse FIR equalizers 

can be cast into one of sparse approximation of a vector by a fixed 
dictionary. The general form of this problem is given by slide 23. 

 Which Sparsifying dictionary results in the sparsest design?? 

 We know from the sparse approximation 
literature that the sparsity of the OMP 
solution tends  to be inversely proportional to  
the worst-case coherence 𝝁 𝚽 . 

Our next challenge is to determine  
the best sparsifying dictionary for use in 
our framework.  
 



Worst-Case Coherence 𝝁(𝚽) Analysis  
• Once again, the sparsity of the OMP solution tends to be 

inversely proportional to the worst-case coherence 

• Our Approach in investigating  𝜇(Φ) ? 

• Orthogonal Matching Pursuit (OMP)  and like methods will 
estimate the optimum representation if  𝜇 ∅ < 1 .[Tropp, 2006] 

 



Worst-Case Coherence of 𝑹𝒚𝒚,  𝝁(𝑹𝒚𝒚): 



Worst-Case Coherence of 𝑹𝒚𝒚,  𝝁(𝑹𝒚𝒚): 

• To get the worst CIR taps which result in the worst-case coherence:  

• The solution of the above optimization problem is:  



Worst-Case Coherence of 𝑹𝒚𝒚 Factors  

 It is important to note here that the other dictionaries, which 
result from decomposing 𝑹𝒚𝒚 and 𝑹𝒙/𝒚, can be considered as 
square roots of them in the spectral-norm sense. For example:  

 Through simulation, we show that the coherence of the 
factors of 𝑹𝒚𝒚 is less than that of 𝝁(𝑹𝒚𝒚).  



Can we do better? 



Reduced-Complexity Design 
• The proposed designs for Sparse FIR LEs involve Cholesky 

factorization and/or eigen decomposition, whose computational 
costs could be large for channels with large delay spreads.  

• For a Toeplitz matrix, the most efficient algorithms for Cholesky 
factorization are Levinson or Schur algorithms, which involve 
𝑶(𝑴𝟐) computations, where M is the matrix dimension.  

• In contrast, since a circulant matrix is asymptotically equivalent to 
a Toeplitz matrix, for reasonably large dimension, the eigen 
decomposition of a circulant matrix can be computed efficiently 
using the fast Fourier transform (FFT) and its inverse with only 
𝑶(𝑴𝑴𝑴𝑴(𝑴)) operations.  

• By using this asymptotic equivalence between Toeplitz and 
circulant matrices, all computations needed for 𝑹𝒚𝒚 factorization 
can be done efficiently with the FFT and inverse FFT. In addition, 
direct matrix inversion can be avoided. 



Reduced-Complexity Design 
A circulant matrix, C, has the discrete Fourier transform (DFT) basis 

vectors as its eigenvectors and the DFT of its first column as its 
eigenvalues.  

𝐶 =
1
𝑀

(𝐹𝑀𝐻Γ𝑐𝐹𝑀) 

The autocorrelation matrix  𝑅𝑦𝑦  is computed as: 

To approximate 𝑅𝑦𝑦 as a circulant matrix, we assume that {𝑦𝑘} is 
cyclic. Hence, 𝐸{𝑦𝑘𝑦𝑘} can be approximated as a time-averaged 
autocorrelation function as follows: 

An M × M circulant matrix C can be decomposed as  
 



Reduced-Complexity Design:   𝑹𝒚𝒚 



Reduced-Complexity Design:   𝑹𝒚𝒚 
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Performance of circulant approximation based approach 
for UPDP channel with v = 5 and input SNR = 30dB. 



Worst-case coherence for 𝑹𝒚𝒚 and its factors 𝑳𝒚𝑯 𝒂𝒂𝒂 𝑫𝒚

𝟏
𝟐  𝑼𝒚

𝑯  

 UPDP with 𝑣 = 8 𝑎𝑎𝑎  𝑁𝑓 = 80. 

  Dashed lines represent the coherence of the corresponding circulant 

approximation for 𝐷𝑦
1
2  𝑈𝑦𝐻  (i.e., 𝑄𝐻) and 𝑅𝑦𝑦 (i.e., 𝑅𝑦𝑦 = 𝑄𝑄𝐻 ). 



Active taps Percentage versus Performance Loss: Vech-A-PDP (LEs) 

Allowing for 0.25 dB performance loss results in a significant 
                     reduction in the number of the total filter taps  
                                        ( 65% reduction)  



SER versus SNR (LEs) 

65% reduction (0.25dB loss) in FIR taps with almost  
                                     same performance    
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• Results. 

 
 
 

• Conclusions  
Future Work 



Dramatic complexity reduction is achieved at a small 
performance loss compared to the conventional MMSE 
non-sparse FIR equalizer design. 

 Sparse FIR equalizers enjoy more rapid taps weight 
adaptation to changing to channel condition which 
support higher mobile velocities.  

 Based on the asymptotic equivalence of Toeplitz and 
circulant matrices, we provide reduced-complexity 
designs,  where matrix factorizations can be carried out 
efficiently using the FFT and inverse FFT. 

 The dictionary with the smallest coherence gives the 
sparsest filter design. 

Conclusions 
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