A watermarking technique to secure printed QR-Codes Statistical hypothesis testing

Hoai Phuong Nguyen[†], Florent Retraint^{*}, Marc Pic^{*} Frédéric Morain-Nicolier[†], Agnès Delahaies[†] * CREsTIC, University of Reims Champagne-Ardenne, France LM2S, ICD, University of Technology of Troyes, France * Group SURYS, Paris, France

The QR (Quick Response) code is a two-dimensional barcode, which was designed for storage information and high speed reading applications. Being cheap to produce and fast to read, it becomes actually a popular solution for product labeling.

NO. AND NO.		A CONTRACTOR OF THE REAL			10.8
	CAN PROPERTY		A States	Seattle States	
and applete	Sector Contractor	A solution		a state and the	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1.21	and a star	
	10 11 10 10 10 10 10 10 10 10 10 10 10 1				
		862 St.			
	a and a second second	1.0			
		in an	SECTION ST	_	
100.000					
	ane in the second	S. Carlos and		and the second	
			Sec.	1.07	
		1999 (A)			
A Carl		20 az az			
2.30%	A 90,707 99		a state	sterio Salar	
		The states	AN THE REAL PARTY	NAME ADDRESS	
			にもないですが		
1 the story	a Patha Conta			Contraction of the second	
CORRECT CONTRACTOR	2月1日 100 日 100 日本市民主任日本	106 16 20 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ESTRAN DESERVICES	HER WARDEN STREET	297

Ones try to make QR code a solution against counterfeiting. We present a novel technique that permits to create a secure printed QR code which is robust against Scan & Reprint attack. The code, named as W-QR code, is constructed by replacing the background of the standard one by a specific textured pattern

which does not affect the normal reading of the encoded message. Scan & Reprint attacks lead to the degradation of the texture and change its statistical characteristics which can be detected thanks to a statistical test.

Concept of W-QR Code

Construction

Figure 1: Proposed flowchart for the construction of W-QR

Reading and Authentication

Figure 2: Proposed flowchart for the reading and validation of W-QR

Clipping Gaussian Noise Texture

The Clipping Gaussian Noise (CGN) texture is characterized by a couple of two parameters (μ, σ) . A CGN texture is created from a matrix of μ -mean and σ -standard deviation Gaussian noise by replacing all the values which are greater than 255 by 255, and all the values which

are smaller than 0 by 0. The replacement creates an artificial clipping effect, which produces a texture saturated in the bright-rank or the dark-rank or both depending on the value of (μ, σ) . Denote $CGN_{\mu,\sigma}$ the texture characterized by the couple (μ, σ) . The figure below shows an example of the $CGN_{200,70}$ texture and its histogram.

Figure 3: CGN (right to left): the texture and its histogram

Proposed Statistical Detector

Noise Local Variance Model

NLV is the local variance of noise which is calculated within each 8x8 block of image [1]. Distribution of NLV values of a given image could be approximated by a Gamma distribution.

Figure 4: Histogram of block variance compared with its Gamma fitting curve

The distribution of NLV observed from images of falsified textures behaves much differently from the ones of falsified textures.

Statistical Test

Denote $X = {X_i}_{i=1,...,n}$ the set of all NLV values of an image, where *i* is the block index and *n* the total number of blocks in the image. We can formulate a hypothesis test as follows:

$$\begin{cases} \mathcal{H}_0 : \{X \sim \mathcal{G}(a, b)\}, & (a, b) \text{ are known} \\ \mathcal{H}_1 : \{X \not\sim \mathcal{G}(a, b)\} \end{cases}$$
(1)

where $\mathcal{G}(a, b)$ denotes a Gamma distribution with a and b respectively the form and scale parameters of the distribution. From a recent work of José *et al.*, in [2], it follows that we can obtain an estimator of the scale parameter by calculating the covariance

It is proved that under \mathcal{H}_0 , we have that:

270 x

3.5

udla 2.5

Contact Information: Lab. of System Modeling and Dependability Charles Delaunay Institute University of Technology of Troyes 12 Rue Marie Curie 10004 Troyes, France Email: hoai_phuong.nguyen@utt.fr

between X and Z = log(X), that is defined as follows:

$$\hat{\beta_n} = \frac{1}{n} \sum_{i}^{n} (X_i - \bar{X})(Z_i - \bar{Z})$$
(2)

$$S = \frac{\sqrt{n}}{\eta} (\hat{\beta_n} - b) \xrightarrow{d} \mathcal{N}(0, 1)$$
(3)

where $\eta^2 = b^2(1 + a\psi_1(a))$, and $\psi_1(.)$ denotes the trigamma function. For a given prescribed false-alarm probability α_0 , we propose a test based on the statistics S which rejects \mathcal{H}_0 if either $S < \Phi^{-1}(\alpha_0/2)$ or $S > \Phi^{-1}(1 - \alpha_0/2)$, where $\Phi^{-1}(.)$ denotes the inverse of the cdf of the standard Gaussian random variable.

Experiments & Results

Figure 5: Description of testing database

Conclusion

- sented.

Forthcoming Research

In a recent work, we propose a novel embedding technique, which makes the texture more sensible to Scan&Reprint attacks. The NLV model was also upgraded and new more powerful statistical detector could be constructed.

References

• A novel watermarking technique is proposed to secure printed QR codes, which may be used as a very cheap solution to fight against counterfeiting. A specific random texture, sensitive to Print&Scan

processes, is substituted with the background of standard QR code to create a secure one, the W-QR code.

• A performing statistical detector basing on the NLV model is pre-

[2] José A. Villaseñor and Elizabeth González-Estrada. A variance ratio test of fit for gamma distributions. Statistics & Probability Letters, 96:281–286, January 2015.

^[1] H. P. Nguyen, F. Retraint, F. Morain-Nicolier, and A. Delahaies. Face spoofing attack detection based on the behavior of noises. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 119–123, Dec 2016.