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"he estimation of nonrandom pole and residue parameters from impulse-response
data Is studied. Specifically, the Hammersley-Chapman-Robbins lower bound
(HCRB) on the estimation error variance Is analyzed for single-input single-

The HCRB for the pole and residue estimation problem is:

20 [

— N w B [&)] ()] ~ <o
T T T T T T

w
[ ]
1
®
G

1.5 2 2.5

—_
-
(3]
N
N
(3]
w
w
(3]
I
S
(3]
&)
%

| G2 GaA T
HCRB = sup (Gycrpg') = sup [GA“ GAA]

First Residue Second Residue

+ Lower bound of Error Variance on Estimation —

output systems with multiple but distinct poles. The HCRB Is compared with the
widely used Cramer-Rao lower bound (CRB) in examples. The HCRB is found to Where G%%, G%*, G** and G#“ are r X r matrices whose (i, ) entries are given ol  Raoot |
. . - . . . HCRB and CRB Br

be significantly tighter than the CRB when noise levels are high compared to the by i |
impL!Ise response signgl, while the bounds become close for small noise levels e 1 iy [1= Grtha) ™ @tha)™ 1= (i)™ 1= @™ ahe )™ 1 a M ah ]\ A
(equivalently, large residues). U T haha, |\ 07 | T (@itha)(@j+ha) 1— aq, 1— ay(aj+ha,) 1— a;(a;+hq,)

aA Aa 1 4 hAj 1 _ajnJrl(ai‘|‘hai)n+1 1- (aiaj)"“ + Values of k —

Gt = G = [eXp< o2 [ 1- a(athy)  1- aa D_l] : : :

e ! ‘ : Fig. 3. Two-pole system: Ratio between the HCRB and CRB as the residues are scaled
M M ha, ha;, 1— (aq;a)"*? :
Motivation 6 = [exp( ) )—1] as A; = 0.1k and A, = 0.3k, for the pole locations a; = 0.2, a, = 0.9 and N =
i Aj L~
10000, o = 0.5.

Here, the supremum is found with respect to h,_, ..., h,_and hy_, ..., hy , and
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Numerical Examples
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Observations:

Fig. 1. Two-pole system: Lower bounds on the pole and residue estimation error 1. CRB is close to the HCRB if the noise level is sufficiently small (equivalently,

variances as a function of the locat'o_” of pole 1 (a_l)’ ‘g"th az = 0.9, 4, = 0.1, 4; = the residues are sufficiently large), i.e. the signal-to-noise ratio is high.
Objective 0.3, N'=10000, o =0.5. 2. The ratio between the HCRB and CRB increases and reaches an asymptote as
the signal-to-noise ratio Is decreased.
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Development and characterization of tighter Hammersley-Chapman-Robbins o | Future work: Trying to prove the observations by expressing the Taylor
lower bound (HCRB) on estimation of nonrandom parameter vector § O_; expansion of the exponential functions in the HCRB expressions In terms of
0 =[a a,..a-4; 4, ..A.]" from impulse response data of r distinct pole I oo i Hadamard powers. The result has already been proved for the single-pole system.
system corrupted by zero mean Gaussian white noise with variance o# given hy: g oyl it
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where fg IS the joint density function of the observations with parameter value 8, Fig. 2. Two-pole system: Lower bounds on the pole and residue estimation error
and v, ..., v, € R* are k mutually independent directions, and hq, ..., h, are variances as a function of the location of pole 1 (a,), witha, = 09,4, = 0.8, 4, =

scalers and supremum are taken over them. 0.9, N =10000, 0 =0.5.




