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Amathematician is a device for
turning co�ee into theorems.

–Alfréd Rényi

What we really need is a machine
to turn some of those theorems
back into co�ee.

–A. J. Tolland
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Regularized di�erentiation

Motivation

Consider a function f defined by noisy data.
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Regularized di�erentiation

Motivation

Computing the derivativeDf in a naive fashion gives a terrible result.
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Regularized di�erentiation

Motivation

Denoising the data first (in this case, using total-variation regularization)
and then di�erentiating improves the result, but we can do better.
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Regularized di�erentiation

Di�erentiation as an inverse problem

I We formulate the di�erentiation as an inverse problem: find a
functionuwhose antiderivative is approximately equal to f :
Ku ≈ f .

I By regularizing this inverse problem, we can enforce the condition
thatu not be noisy.

min
u
‖Du‖1 +

µ

2
‖Ku− f‖22.
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Regularized di�erentiation

Result

The TV-regularized derivative is noisefree, and captures the essential
qualities of the derivative, including the discontinuity.
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Regularized di�erentiation

2D case

The same framework applies when f has 2 (or more) dimensions.

min
u
‖Du‖1 +

µ

2
‖Ku− f‖22.

However:
I u is vector valued.
I Du is matrix valued.
I Computational e�iciency is more important.
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ADMM algorithm
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ADMM algorithm

Variable splitting

We introduce a variablew, a proxy forDu.

min
w,u
‖w‖1 +

1

2λ
‖w −Du‖22 +

µ

2
‖Ku− f‖22.

Then we alternate between solving for each variable, with the other
fixed. Each subproblem is much easier than the original problem.

min
w
‖w‖1 +

1

2λ
‖w −Du‖22,

min
u

1

2λ
‖w −Du‖22 +

µ

2
‖Ku− f‖22.
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ADMM algorithm

Shrinkage

Thew subproblem has an explicit solution:

arg min
w

‖w‖1 +
1

2λ
‖w −Du‖22 = S1(Du, λ),

where
S1(x, λ) = max{‖x‖ − λ, 0}

x

‖x‖
is known as so� thresholding.

A modification of the `1 norm lets us use p-shrinkage instead:

Sp(x, λ) = max{‖x‖ − λ2−pxp−1, 0}
x

‖x‖
,

which for p < 1 can give better results.
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ADMM algorithm

Calculus in the Fourier domain

Theu-subproblem is quadratic, giving us a linear equation to solve:

(1

λ
DTD + µKTK

)
u =

1

λ
DTw + µKTf. (1)

If we use periodic boundary conditions for the di�erentiation, thenD is
diagonalized by the discrete Fourier transform.

We define our antidi�erentiationK to also be diagonalized by the
discrete Fourier transform. Then (1) can be solved via an FFT, pointwise
division by a fixed kernel, and an inverse FFT.
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ADMM algorithm

Themethod of multipliers

We can enforce the equality constraintw = Du by including a
Lagrange multiplier,

min
w,u
‖w‖1 +

1

2λ
‖w −Du− Λ‖22 +

µ

2
‖Ku− f‖22,

which is updated each iteration by adding the residual:

Λn+1 = Λn +Dun+1 − wn+1.
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Application: phase unwrapping
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Application: phase unwrapping

Interferometric SAR

Given synthetic aperture radar images from two satellite passes, the
pixelwise di�erence in phase is a function of the elevation, and any
elevation changes between the two passes.

FromG. Solaro, P. Imperatore, and A. Pepe, Satellite SAR interferometry for Earth’s crust deformationmonitoring and geological phe-
nomena analysis, InTech 2016.
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Application: phase unwrapping

Sentinel-1 example

We look at an interferogram from the Descartes Labs platform, using
Sentinel-1A imagery of Isla Isabela in the Galápagos Islands on April 7
and April 19, 2017.

amplitude coherence phase
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Application: phase unwrapping

Interferogram coherence
We can use the coherence band to determine where the phase
information is meaningful.
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Application: phase unwrapping

Interferogram phase
The phase di�erence is noisy, and is only knownmodulo 2π (phase
wrapping).
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Application: phase unwrapping

Phase unwrapping

To unwrap the phase, we use the fact that the di�erence between the
true phase and the unwrapped phase is piecewise constant. Our
approach:

I Compute the gradient (using our regularization method).
I Where the gradient magnitude is large, fill in gradient values with
the mean of nearby non-large gradient values.

I Re-integrate the adjusted gradient (usingK).
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Application: phase unwrapping

Regularized gradient
Regularization suppresses noise, while preserving discontinuities at
phase jumps. Using p = 1/4 gives less contrast loss than p = 1. The
Python implementation of the algorithm ran in 45 seconds.
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Application: phase unwrapping

Unregularized gradient
The unregularized gradient is too noisy to be useful.

Dxf
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Application: phase unwrapping

Unregularized gradient
The unregularized gradient is too noisy to be useful.

Dyf
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Application: phase unwrapping

Result

The unwrapped phase has no discontinuities, and preserves the
elevation information.
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Application: phase unwrapping

Summary

I Regularizing the di�erentiation process with total variation
suppresses noise, while preserving discontinuities.

I The alternating directions, method of multipliers algorithmmakes
the di�erentiation very e�icient.

I Di�erentiating interferometry phase lets us identify and remove
phase wrapping. Thanks to Mike Warren, Jason Schatz, and the
Descartes Labs platform team.

I Descartes Labs: satellite imagery startup. We’re hiring!
http://www.descarteslabs.com/jobs/
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