Performance Evaluation of Beacons for Indoor Localization in Smart Buildings

Andrew Mackey, mackeya@uoguelph.ca Petros Spachos, petros@uoguelph.ca University of Guelph, School of Engineering

Agenda

- O The Research
- O The Motivations
- The Design
- The Results
- The Conclusion
- 0 Q & A

The Research

- Testing feasibility of Bluetooth Low Energy beacon based indoor navigation
- BLE Beacon Comparison
 - Kontakt vs. Estimote vs. Glimworm
 - O Proximity Accuracy
 - Using Received Signal Strength Indicator (RSSI) Techniques
 - Only accuracy, no other considerations
- O RSSI Filtering
 - O Kalman Filters

O Fully Mobile

The Motivations

O IoT Growth

- Increased demand for interconnectivity
- Determine feasibility of; simple, fully wireless, indoor navigation using BLE
- Current Solutions:
 - Limited Indoor Location Services
 - Vision based solutions are expensive
- GPS does not work:
 - Physical obstructions (walls/roof)
 - Not accurate enough for requirements of indoor location services
 - Need alternate solution

The Motivations

Micro-localization scenarios

- Malls/shopping centers
 - O Target & Walmart
 - Navigate stores
 - Location based promotions

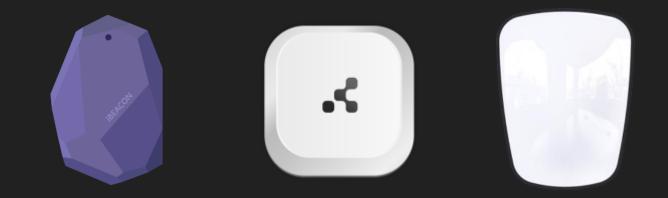
- Museums
 - O National Slate Museum, Wales
 - O Brooklyn Museum, New York
 - Philips Museum, Eindhoven, The Netherlands

What Are Beacons?

- Small transmitting devices
- Fully wireless (Button cell power sources)
- Designed for low power consumption
 - O Implement Bluetooth Low Energy Protocol
- Implement iBeacon/Eddystone packet layout
- O Configurable
 - Transmission Power
 - Transmission Interval
- Additional Sensors
 - O In only some cases

The Motivations: Why Beacons?

- O Small
- Fully Wireless
- O Cheap
- O Longevity
- O Scalable
- O Configurability



https://locatify.com/blog/indoor-positioning-systems-ble-beacons/

The Design: Beacons

O 3 Beacons are utilized

- O Estimote
- O Kontakt
- O Glimworm

	Estimote	Kontakt	Glimworm
Power Supply	4 x CR2477 - 3.0V	2 x CR2477 -3.0V	1 x CR2450 - 3.0V
Radio	Bluetooth 4.2 LE	Bluetooth 4.0 LE	Bluetooth 4.0 LE
Size	Length: 62.7 mm Width: 41.2 mm Height: 23.6 mm	Length: 55 mm Width: 56 mm Height: 15 mm	Length: 85 mm Width: 64 mm Height: 15 mm
Appr. Price (USD)	\$33	\$20	\$29

The Design: Beacons

Beacon Configurations

• Estimote & Kontakt

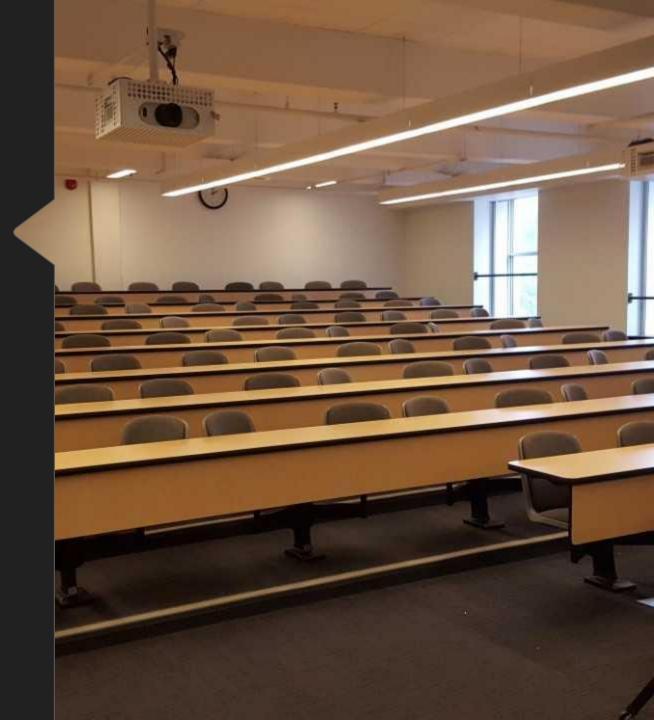
- Transmit Power: -12dBm
- O Transmit Interval: 300ms
- Apple's iBeacon protocol
- O Glimworm
 - O Transmit Power: -8dBm
 - Transmit Interval: 300ms
 - Apple's iBeacon protocol

- Trade-off between energy consumption & accuracy
 - Focus on accuracy
 - Focus on filtering improvements
- Ease of Implementation with Mobile Application
 - Mobile implemented Kalman filter

The Design: Test Environment

For the purposes of the experiment:

- Semi-controlled environment
 - O 1 Beacon at a time
 - No people besides myself
 - No physical environmental changes
 - No control over other Bluetooth or Wi-Fi channels in the area


Reasoning:

- Want to see only the effects of room size on filtering parameters
- Eliminate variations in testing between beacons
- Have an understanding of the baseline/semi-ideal case

Test Environment: Lecture Hall

- University of Guelph: Richards Building
- 9m x 11m room
- Chosen for its simple configuration and layout
- Representative of average size room in a building
- Consistent environment
 - No physical changes in environment when empty

11

The Design: Receiver (Smartphone)

- The receiving device is Google Nexus 5
 - Running Android 6.0.1
 - Implements all distance calculations & filters on the phone itself
 - Makes use of "Beacon Scanner" application with changes to accommodate Kalman Filter

The Design: Mobile Application

- Fully mobile integration!
- Utilizes the open source AltBeacon Library
 - Enables phone to identify iBeacon and/or Eddystone protocols

- Available on Google Play store
 - Originally developed by Nicolas Bridoux

Application Screenshot

Beacon Scanner with UI changes and filter implementation -Done with simple hash maps and math functions

Shows RSSI and Distance

- -Distance calculated with best curve fit algorithm
- -Provided by AltBeacon Library
- -Specific to each phone

Base Application w/o filters available on Google Play store

	*		2 2.	
Scannir	ng 🤈 🛛 🚍	*	1	
protonoc	ibeacon or			
0.70 m	UUID	Major	Mino	
Near	b9407f30-f5f8-466e- aff9-25556b57fe6d	63818	381	
Distance	iBeacon 00):A0:50:1:	2:1D:2	
1.12 m	UUID	Major	Mind	
Near	00050001-0000-1000-8000- 00805f9b0131	2	2237	
Distance	iBeacon 00:A0:50:12:1D:23			
1.32 m	UUID	Major	Mino	
Near	00050001-0000-1000-8000- 00805f9b0131	2	226	
rawRSSI	rawDist FiltRSSI	Fi	ltDis	
-84 dB	™ 1.32 -83 d	Bm 1	.26	
Manufact	urer 0x004C			
Last se <u>e</u> n	Sep 11, 2017 2:56:00 PM			
Distance		\:D9:D8:2	4:71:B	
	10.05	Moior	Mine	

The Design: Kalman Filter

Prediction Stage

O State Prediction at Time k

O x(k | k-1) = x(k-1 | k-1)

- System Error & Noise Covariance Prediction at time k
 - **O** P(k | k-1) = P(k-1 | k-1)+Q

Q (process noise covariance) = zero in this system.

Assume environment is controlled with direct LOS.

Static measurements are taken, Hence Static Kalman

Update Stage

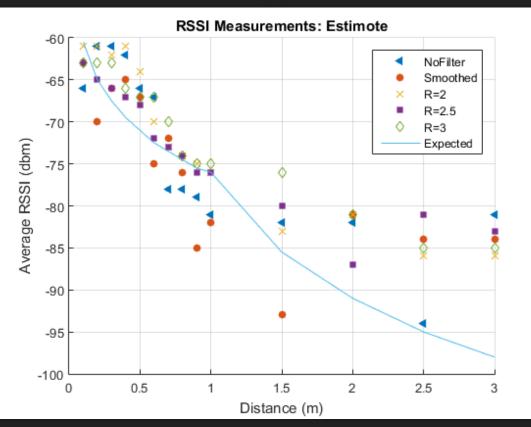
- O Compute Kalman Gain
 - G(k) = P(k | k-1)/(P(k | k-1) + R)

R is the parameter optimized for the environment

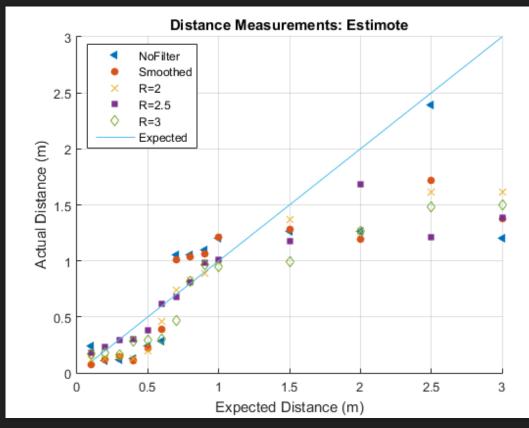
R = 2 for Estimote/ Kontakt. R =2.5 for Glimworm

O State Update at time k

O $X(k | k) = x(k | k-1) + G(k)^{*}[y(k)-x(k | k-1)]$


y(k) is the new raw RSSI value at the current state

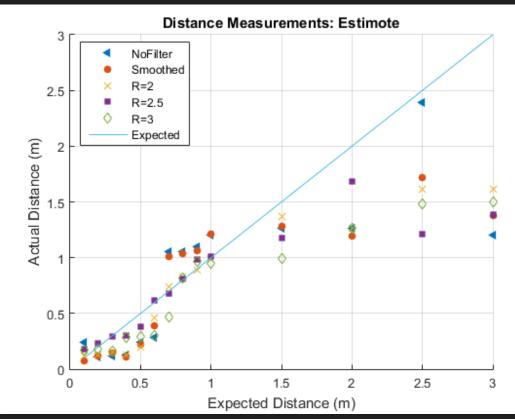
 System Error & Noise Covariance Update at time k


O P(k | k) = [1-G(k)]*P(k | k-1) 15

The Results: Estimote

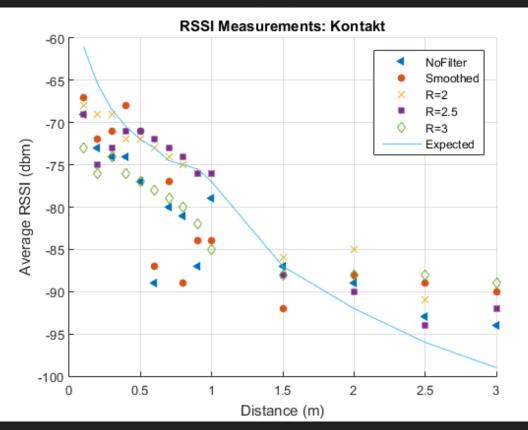
RSSI

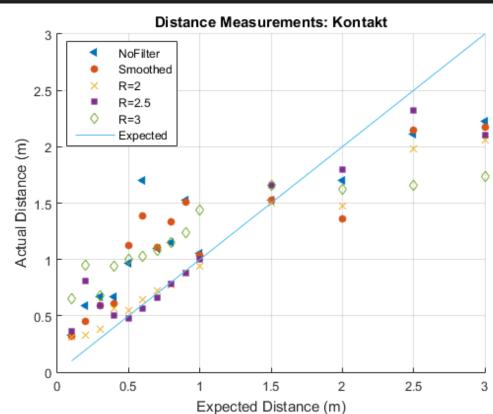
Distance



6

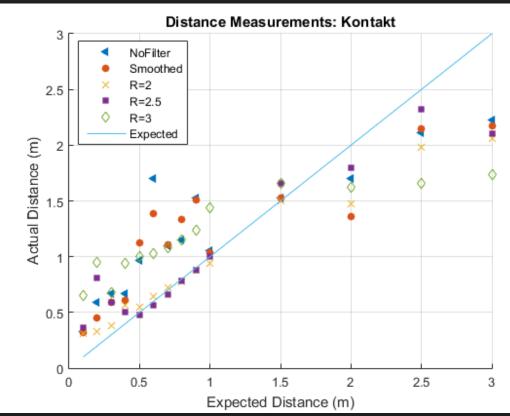
The Results: Estimote Discussion


- Distance and RSSI accuracy for this environment fall after 1.5m
- This tends to be true for all the beacons
- Often underestimated for Estimote


Estimote Distance

The Results: Kontakt

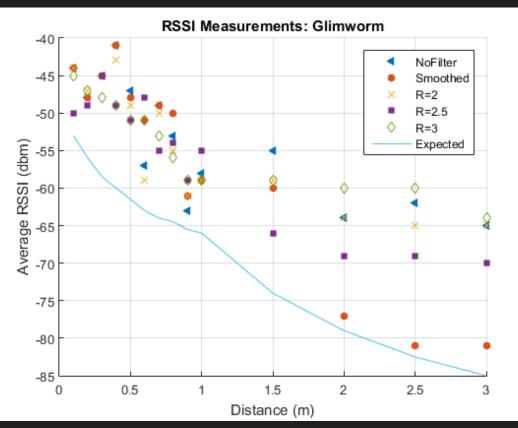
RSSI

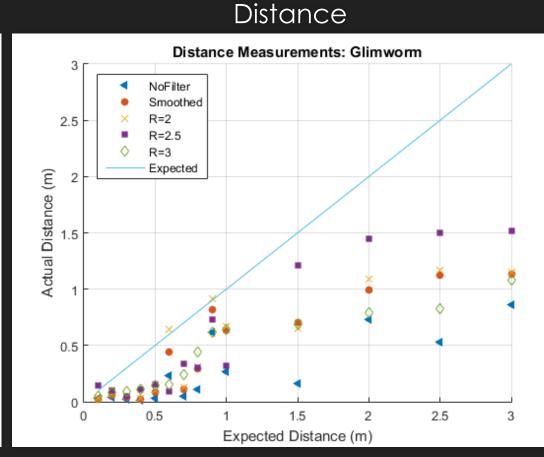


Distance

The Results: Kontakt Discussion

- Better estimation after 1.5 meters in comparison to Estimote beacon
 - Trend of accuracy falling still holds true
- Better distribution of results
 - Tends to overestimate at first
 - Underestimates at greater distances

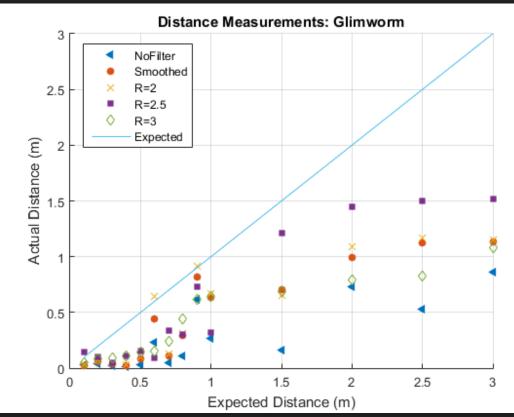

Kontakt Distance



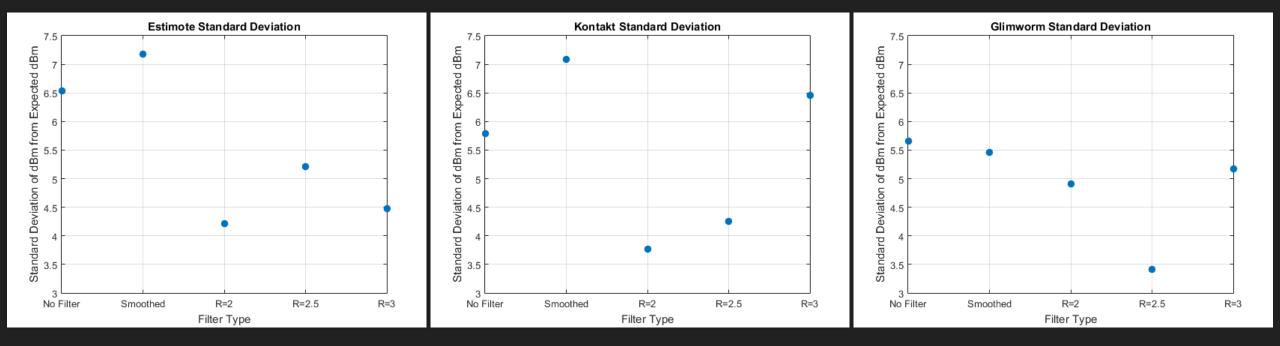
9

The Results: Glimworm

RSSI



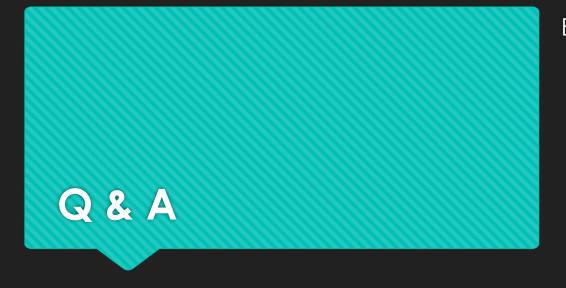
20


The Results: Glimworm

- Always underestimating
- Much less randomness in results
 - Each set follows its own curve
 - Especially falls short at greater distances
 - O Even more without filtering

Glimworm Distance

The Results: Standard Deviation



The Results: Discussion

- Clear improvement in proximity estimation using Kalman filter
- Kalman filter parameter selection is vital to filter performance
- Beacons with same transmit power require same parameter selection
- Higher Transmission Power = higher R value for Kalman filter
 - *In this scenario

The Conclusion

- All filtering is implemented on the smartphone, in Android
- Each beacon benefits form filtering in indoor proximity applications
- Important to test the environment to select optimal Kalman filter parameters
- Glimworm & Kontakt achieved the best results in this environment
 - Kontakt very accurate close up
 - Glimworm achieves lowest standard deviation
 - O Not definitive winner an indication of available performance
 - Under these specific conditions! Not guaranteed for all environments
- Future/current work:
 - Energy consumption comparison
 - Additional filtering techniques

Email: mackeya@uoguelph.ca

