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Opportunities in distribution systems

» Distribution systems envisioned to accommodate renewable
distributed generation (DG)

» Challenge: Uncertainty and intermittency in renewable DG
» Stochasticity in renewable DG renders voltage profile uncertain
Potentially causing over- and under-voltage conditions

» Resources to mitigate uncertainty
Reactive power generated or consumed by photovoltaic (PV) inverters

Distributed storage: charge/discharge and reactive power support

» Limit the probability of nodal voltages violating specification

Chance constrained (CC) optimization
Distribution
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Prior art: Stochastic optimization in DN

» Stochastic optimization in distribution systems (no chance constraints)
[Kekatos et al. "15] [Dall’Anese et al. ’15] [Wang et al. ’16] [Bazrafshan-Gatsis '17]

» Chance constraints are typically nonconvex; three major approaches
Special distributions for the uncertainty (e.g., Gaussian) can lend tractability
when the underlying model is linear

Earlier works on transmission networks [Sjodin et al. ’12][Bienstock et al. ’14]
Nonconvex model due to power flows in distribution networks [Cao et "13]

Conservative convex approximations, e.g., using the conditional value-at-risk
(CVaR) [Summers et al. "15]

Distributions networks [Bazrafshan-Gatsis '14] [Dall’Anese, Baker, Summers '16]
No assumption on the distribution

Scenario approach [Calafiore-Campi ’06]
Can be conservative [Zhang et al. ’13]

Conditioning on recent observations can alleviate drawbacks [Bolognani et al. ’17]
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Prior art: Control policies

» In regards to the type of control policy, there are three approaches

One-size-fits-all decision: Compute a single resource allocation that will
work for all realizations of the uncertainty (typical in earlier works)

Scenario-dependent decisions: Consider discrete scenarios of the
uncertainty, find one control action for each scenario

Typical with CVaR approaches
Increases the number of optimization variables
Affine policies: Control action is linear in the uncertainty

Transmission networks [Bienstock et al. ’14] [Summers et al. ’15], robust control
of distr. systems [Lin-Bitar], building climate control [Oldewurtel et al. ’08-'10]

This work: Voltage regulation via chance constraints

Assumes Gaussianity, optimizes an affine policy
Reactive power from PV inverters; real and reactive power from storage

Minimize thermal losses
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Simplified DistFlow equations
Vo = fixed 2% Vin—1,t Vit Vingit Vit
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Losses

Substation

P1,t,41,t Pm—1,t,9m—1,t Pm.t> dm.t Pm+1,t Qm+1,¢ PNt N ¢t
Net consumption

Pm—l,t:Pm,t—l_pm,t (m:O,,N—l,tzl,,T)

Approximations _
m— _ m + m
|. Losses negligible C‘Q/ b B ‘Ci X 2q ,tP
2. Voltage drop very small matt = Vit — 200m Lot + Xm@m,t)
[Baran-VWu ’89] [PN,t —Qn:+=0 (t=1,...,7) ]
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Uncertain vs. decision variables

m+ 1
hpm iy Qm t
Power Consumptlon PV Generatlon Distributed Storage
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Uncertainty w, () Control actions u,, ()

collected in vector w collected in vector u

Vector v collects nodal voltages for all time slots

Simplified DistFlow equations imply [V = Du+ Ew + Vol]
Vector w assumed Gaussian, w ~ N (W, X); Cholesky fact. ¥ = LL "

Reasonable assumption when w modeled as forecasted value + error
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PV injection model

PV
» Maximum real and apparent power capacities pm mascs O max
pmt pmmax (m:LaNat:L?T)
» Inverter sizing to effect reactive power control
PV PV
Sm max > pm,max

[Turitsyn, Sulc, Backhaus, Chertkov "10-’1 1]

PV

» Reactive power q,,; generated or consumed: decision

» Coupled with the uncertainty through inverter constramt/ 1 \
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Storage model

» Charge or discharge with limits [—pSt < pst < pt ]

m,max — Im,t — pm,max

» Time slot duration ¢§; energy stored in the beginning of slot x,,

st
[xm,t—l—l — Im,t =+ 5pm,t] Um,t
» Initial condition x,, 1 known

» Storage capacity limit [O < Ty < xm,max]

» Terminal constraint [«’Em,T+1 > gm]

» Storage inverter sizing Sﬁf,max > Pfﬁ,max

. G (B (D
» Reactive power provided by storage unit ¢, , Pmyt | | =Pmt | | Pm.t
| Aot —qP‘g _qﬁrf t
st \2 st \2 st 2 ’ Uz ’
[(pm,t) + (qm,t) S (Sm,max) ] \Load) | DG ) DS )
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Quadratic objective, linear constraints

b Objective° Minimize thermal losses
T N-—1
Q. (t)

IPILE

t=1 m=0
» Voltages [V = Du+ Ew + Vol]
Storage states [ x = Ax(1) + Bu ]

—u'Qu+w Rw+u'Sw+w'S'u

v

Storage input, state, and terminal bounds [Fx < ,Gu < 'y]

v

» Inner linear approx. of inverter constraints using polygon with ¢ facets

s vzns) A,

< A
» Voltage regulation constraints Vimin < vV < Vipax in matrix form
[ Kv <k ]
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Chance constrained optimization

» Uncertainty renders nodal voltages random

[V:Du—l—Ew+V01]

» Let k; be the i-th row of K
» Require that each constraintin Kv < k holds with probability «;

[Prob[kiTV <K >ay, 1=1,. ..2NT]

» Uncertainty also renders objective function random

Minimize expected value

10/16



Affine policies

v

Key idea: Make control action adaptive to uncertainty

v

Linear policy

PErv—y

» Aim is to determine M, h

» Causality: Control at time ¢ depends on previous uncertainty
realizations, not future ones

» Decentralized control: Decisions of node m depend only on
uncertainty of node m

Does not require communication

» Centralized control: Decisions of node m depend on uncertainty of
all nodes

Requires communication

» Previous constraints are linear, represented as[M C /\/l]
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Objective and constraints

» Substituting u = Mw + h into the objective yields a convex
quadraticin M. h

2
E [uTQu +w Rw +u'Sw + WTSTu} — TI[RX] + (W RW) + HQ1/2MLHF
+ w'M'QMwW + 2h"QMw +h'Qh + 2h"Sw + 2Tr[M ' SX] 4+ 2w 'M ' Sw

» Chance constraint on voltages becomes SOCP constraint
Prob{k, [D(Mw + h) + Ew + 1V)] < s;} > a; <=
L' (DM+E)'k;| <r;—k;(Dh+1Vp)
2

k] (DM +E)w 4+ & (o)

» Complication: Affine policy renders the left-hand sides of hard
constraints (e.g., state and input bounds Fx < ¢, Gu < «) random

» Solution: Enforce these as chance constraints, but with tighter
probability specifications - SOCP constraints [Oldewurtel et al. ’08-'10]
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Chance constrained problem as SOCP

2
min TR+ (' Rw) + HQWMLH + % MTQMw +2hT QMw + h' Qh
) F

+2h"Sw +2Tr[M ' SX] + 2w ' M ' Sw
subj. to
(&7; + €zT¢M)V_V + 07 (ay,) |LT (€1 + M TEx)

z] Mw + &~ HLTMTZz

gwi—ggh, i=1,....(NT

<CZ—zTh 1=1,...,/NT

£TBMw + &~ HLTMTBT < ¢ — £ (Ax(1)+Bh),i=1,...,N2T + 1)

gTMv_v + o (a LTl\/ITgZ < — gTh i=1,...,2NT
7 ’Y

k] (DM + E)w + & ()
M e M.

(DM +E)

Jl <ki—k] (Dh+1Vy), i=1,...,2NT
2
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Numerical tests

Network with N = 15 nodes; Avg. PV profile from NREL data (Apr. 4, 2006); § = 5 min

No storage here (included in the paper)
Viin = 0.94,V,,..,=1.06

Probability spec. for voltage violation 85%; Probability spec. for all other constraints 95%

10,000 scenarios of PV generation drawn for validation

Figures show % of scenarios with  [¢”",
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v v

Numerical tests

Vmin = 0.94,V,.,=1.06

Probability spec. for voltage violation 85%; probability spec. for all other constraints 95%

10,000 scenarios of PV gen. drawn for validation

PV
qm,t

projected back to feasible set; resulting voltages computed from DistFlow

Centralized design slightly pushes the voltage CDF to the right, decreases objective

Probability specification satisfied by empirical CDF (15% of scenarios are below V)

Empirical cdf of terminal nodal voltage
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Summary

» Chance constrained optimization of distributed generation and storage
Reactive power from PV inverters
Storage charge/discharge and reactive power support
Affine policy for decision variables
Overall problem is SOCP

» Future directions

Tests on tree networks
Scaling of the approach to larger networks, custom algorithms

Thank you!

Full citation: K. S. Ayyagari, N. Gatsis, and A.Taha, “Chance Constrained Optimization
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