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Introduction

« Agronomists and farmers need to know the number of
plants in their crops to predict future yield

« Can we count without locating?

« We count plants in a crop field without knowing where
they are

« We build our plant dataset from a single image of the
entire crop field

» \We describe a method to extract images sections or
“plots” from an orthorectified image
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1. Plot Extraction
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Dataset

420 meters ~ 4 football fields
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Dataset

1,240 images were extracted

420 meters ~ 4 football fields
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Vertical Projection




Profile Function

 \ertical profile over the entire crop field:
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The Cost Function

|t does not seem appropriate for gradient descent:
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Method

1. User provides: (a) number of rows and (b) number of ranges
2. FiInd range-separating lines:
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Method

3. For each range, find row-separating lines:
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Method

4. Select the n-th row of each range
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Method

4. Find range-separating lines for the n-th row
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Resulting Cropped Images
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Resulting Cropped Images




Dataset

« We groundtruthed 2,480 labeled images
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— 80% for training, 10% for validation, 109 for testing
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#0 Plant count: 15
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Counting Plants With Deep Learning

VIPER

CNN D >0 # plants

S— Regression layer
Compared CNNSs:

* AlexNet-v2

* Inception-v2
* Inception-v3
* Inception-v4

With minimal modification

to adapt to image size 0@ cap,
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Cost Function

Most research uses cross entropy as cost function,
which reduces to

H(p.q) =-log q(C)

where (x) are the activations of the last layer,
and C is the true number of plants

This cost function is not appropiate when the
classes are not independent, and there is label noise

We want to count, not classify
We propose to use the L, norm
A i A p
L, (x, %) =|x—X]

and test which value of p provides the lowest error o9 =~



Network Architectures

« We examined several CNN architectures:
— Alexnet
— Inception-v2
— Inception-v3
— Inception-v4

« We modify the last layers to be able to process
non-rectangular images (of size 546 X 103)
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Stopping Criteria

Error

m Validation
m Test
m Training

Epoch
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Stopping Criteria

Error

m Validation
m Test
m Training

Epoch
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Value For p

« Our metric for testing iIs Mean Average Percentage Error

MAPE=100

x-C|
C

« Effect of p on the error, evaluated using AlexNet

VIPER

D MAPE
2 8.2%
1.8 8.4%
15 8.5 %
1 7.9 %
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Results

 Performance of different architectures was evaluated

Network MAPE MAPE
(w/o data augm) | (w/ data augm)
AlexNet 8.3% 7.9%
Inception-v2 8.2% 6.7%
Inception-v3 7.1% 6.7% =
Inception-v4 12.4% 11.4%
 (using p=1)
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Conclusions

« We presented a CNN-based method to count plants
without locating them

« \We presented a method to segment (or extract) image
sections, or plots, from an orthorectified image

« Future work will include investigating loss functions
more stable than the L1, such as the smooth L1,
and training with larger datasets
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