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Learning loads in distribution grids

n Reduced observability due to sheer extent and 
limited metering infrastructure
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n Leverage smart meter data and smart inverters

n However, load estimates needed for grid 
optimization, billing, and energy theft detection



Problem statement and prior work

n Collected readings

- passively collected (smart meter and sychrophasor (PMU) data)
- actively collected through grid probing
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Load learning: Given readings from a set of metered (controllable) buses        
recover the system state and hence the power injections at non-metered buses 

M,

O.

n For sufficiently rich (pseudo)measurement sets, solve as D-PSSE 
[Dzafic-Jabr-Pal et al’13], [Klauber-Zhu’15], [Gomez-Exposito et al’15]

n Linear estimator if grid is equipped with micro-PMUs [A. von Meier’15]

n Meter placement in distribution grids [Lui-Ponci’14]

n Probing transmission grids for estimating oscillation modes [Trudnowski-Pierre’09]

n System identification in DC microgrids [Angjelichinoski-Scaglione ’17]



Linearized distribution flow model
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n Single-phase radial grid with N+1 nodes and N lines 

n Approximate LDF model [Baran-Wu’89], [Bolognani-Dorfler’15], [Deka et al’17] 

nodal voltage phasoru ' Rp+Xq

✓ ' Xp�Rq

Vn = |Vn|ej✓n

um

pm, qm pn, qn

un

r` + jx`

un := |Vn|2 � |V0|2

n The inverses of (R,X) are reduced graph Laplacian matrices



Passive load learning

n Model for synchrophasor data
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n Partition data into metered and non-metered buses

n Model for smart meter data

n Non-metered injections can be uniquely recovered via least-squares if 
regression matrices are full column-rank

uM �RM,MpM �XM,MqM = [RM,O XM,O]

pO
qO

�
+ ⌘M



Identifiability with passive load learning
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metered buses
non-metered buses O

M

Proposition 1: Given smart meter data on                                the  injections at are 
identifiable if every bus in     is connected to unique buses in         and M1 M2.

OM = M1 [M2,

O

Proposition 2: Given PMU data on      , the injections at      are identifiable if every bus 
in     is connected to a unique bus in      

M O
O M.



Key ideas
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n Partition reduced (resistive) Laplacian

n Rank of Schur complement

n Matrix inversion lemma and Sylvester's inequality

RM,O = �L�1
M,MLM,O(LO,O � L>

M,OL
�1
M,MLM,O)�1

L := R�1 =


LM,M LM,O
L>
M,O LO,O

�

rk(L) = rk(LM,M) + rk(LO,O � L>
M,OL

�1
M,MLM,O)

n Matrix             is generically invertible iff there exists a perfect matching in the 
bipartite graph defined by its sparsity pattern [Tutte’47]

LM,O

n Perfect matching as max-flow problem;  analysis holds for radial multiphase too

LM,O =

2

66664

0 ⇤ ⇤ ⇤
⇤ 0 ⇤ 0
0 ⇤ 0 ⇤
0 0 0 ⇤
0 0 ⇤ 0

3

77775

O M

W. T. Tutte, “The factorization of linear graphs,” Journal of the London Mathematical Society, 1947
Ford and Fulkerson, “Maximal flow through a network,” Canadian J. of Mathematics, 1956



Identifiable setups with smart meter data
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and 10 added lines (meshed) 
|O| = 10

IEEE 123-bus network with |O| = 4
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Identifiable setups with PMUs
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Similar results for weakly meshed networks



Load learning through grid probing
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n Probe nonlinear physical system by perturbing 
power injections at controllable buses [how?]

n Record data                    associated with 
state

n Exploit the fact that remain 
invariant during probing

v1

Time t = 2

Time Record data 
associated with state

{u1
n, p

1
n, q

1
n}n2Mt = 1 :

{u2
n, p

2
n, q

2
n}n2M

v2 6= v1

Repeat say every second for 
each separated by say 5 secs, over 5 mins

t = 1, . . . , T

{ptn, qtn}n2O

pn(vt) = p̂tn 8n 2 M
qn(vt) = q̂tn 8n 2 M
un(vt) = ût

n 8n 2 M

pn(vt) = pn(vt+1) 8n 2 O
qn(vt) = qn(vt+1) 8n 2 O

t = 1, . . . , T

t = 1, . . . , T � 1



Identifiability through grid probing
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Theorem: If       can be partitioned into T/2 subsets such that each can be matched to , then 
the states               and the injections at      are locally identifiable.{vt}Tt=1 O

O M

n passive scheme with smart meter dataT = 1 :

n passive scheme using PMU dataT = 2 : O ! M

S.Bhela, V. Kekatos, and H. Veeramachameni, “Enhancing observability in distribution grids using 
smart meter data,” IEEE Trans. on Smart Grid, (early access) 2018.



Numerical tests (Jacobian condition numbers)  
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condition numbers of CPF 
Jacobians for random states
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Numerical tests with synthetic and real data
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n RMSE on system state over one day

n Probing by changing pf in smart inverters

n Actual load/solar data (Pecan St.)



Conclusions
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n Inverter data collected via intentional probing

n Identifiability for possibly meshed and polyphase grids

n Improvements with increasing T

n Optimal probing design? PMU data? Line flow data? 

n Probing for topology identification?

Passive injection learning
n Identifiability for single-phase radial grids smart meter and PMU data

n Simple LS solver using LDF model

n No time coupling; timescale depends on data

Active injection learning

Thank You!


