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Identification is a core component in many applications:

@ Recommender systems, /.\ \

@ Online banking and commerce, \./“ Y
I'N
L

@ Surveillance,
@ Gaming,
Different biometrics: fingerprint, face, speech, retinal scan, gait (this work)...

|
@ Administration etc. .

Each comes with advantages and drawbacks, e.g. accuracy or intrusiveness.
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Gait-based identification

Prior art - various modalities exploited:
@ Video (silhouette) (1, 2): high accuracy, privacy issues.
@ Mechanical force sensors (3, 4): high setup cost.
@ Wearables (5, 6): instrusive.
@ WiFi (7): limited accuracy and range.

@ Sound (8.9, 10, 11): (assuming VAD) privacy-preserving, wideband,
widespread availability.

@ Seismic (12): privacy-preserving, robust, secure, narrowband.
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Gait-based identification

Prior art - various modalities exploited:
@ Video (silhouette) (1, 2): high accuracy, privacy issues.
@ Mechanical force sensors (3, 4): high setup cost.
@ Wearables (5, 6): instrusive.
@ WiFi (7): limited accuracy and range.

@ Sound (8.9, 10, 11): (assuming VAD) privacy-preserving, wideband,
widespread availability.

@ Seismic (12): privacy-preserving, robust, secure, narrowband.

Complementary properties of sound and seismic cues indicate that a bimodal
approach may be effective.

Seismic K
v
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Gait-based idetification

Open set identification:

@ Identify a person, if coming from a known set.
@ Otherwise, decide that the person is unknown.
Addressed through GMM-UBM framework (13).

Remaining challenges:

@ No publicly available bimodal data.
@ No generally acclaimed feature type.

@ Seamless feature fusion?
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Gait-based idetification

Open set identification:
@ Identify a person, if coming from a known set.
@ Otherwise, decide that the person is unknown.
Addressed through GMM-UBM framework (13).

Remaining challenges:

@ No publicly available bimodal data.
- We recorded a smalll scale dataset (size precludes deep learning).

@ No generally acclaimed feature type.
- Tailored scafttering fransform (14) based features.

@ Seamless feature fusion?
- Surprisingly simple - stay tuned.
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Gait signals
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Particle velocity:
& o) = F (0(0) o 7 ( [ Fogear)

Footfall ~ 0.15s.
Period ~ 2 x 0.61s. (15)

Force (body weights)
a = ®
> B x

°
°

03 04 05 06 07
Time (seconds)
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Gait signals
Particle velocity:

d(w) = F (v(t)) o< F (/ ﬁGRth)
j\/\/\ ﬁ Fooftfall ~ 0.15s.
Period ~ 2 x 0.61s. (15)

1 02 03 05 06 07
T\ms(sacands

-

©
b

Force (body weights)
o
>

°
°

Acquired signals are band-passed and convoluted:
@ Sound, for200Hz < w < 20kHz:

&a(w, (1)) = ha(w, 7(t))d(w) + éa(w) = éa(w,?(t))% + éa(w)

@ Seismic, for 20Hz < w < 300Hz:

2g(w, 7(t)) = hg(w, 7(t))0(w) + ég(w) = Sgig(w, 7(t))0(w) + ég(w)-
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Gait signals
Particle velocity:

d(w) = F (v(t)) o< F (/ ﬁGRth)
Jf\f/\ ﬁ Fooftfall ~ 0.15s.
Period ~ 2 x 0.61s. (15)

1 02 03 05 06 07
T\ms(sscands

-
g =
® o

Force (body weights)

°
°

Acquired signals are band-passed and convoluted:
@ Sound, for200Hz < w < 20kHz:

&a(w, (1)) = ha(w, 7(t))d(w) + éa(w) = éo(w,?(t))% + éa(w)

@ Seismic, for 20Hz < w < 300Hz:

2g(w, 7(t)) = hg(w, 7(t))0(w) + ég(w) = Sgig(w, 7(t))0(w) + ég(w)-

Local stationarity assumption (LSA)

Within (short) temporal segment of duration 7

PN o echnicolor
§.(w, 7t +t") = §.(w, 7(t)), analogously h.(w,7(t +t')) = h.(w, 7(t)). o
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Feature extraction

@ Signals depend on impact velocity © and relative position @
@ Sound and seismic signals represent different physical quantities.
@ To cope, we rely on a "CNN-like” scattering trnsform (16).
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e0

Feature extraction
@ Signals depend on impact velocity © and relative position @

@ Sound and seismic signals represent different physical quantities.
@ To cope, we rely on a "CNN-like” scattering trnsform (16).

"
Feature extraction up to the order p: : °
0: So(z) = ¢ *x, )
) bY |2 %, |
L ST (@) = ér * [ha, * ],
20 S312(2) = b+ [thay * [a, * 2|
o le,.,.xp(m) _

P = e xih ™
N R I N TR Il a2l

[[[a 5 1o, | s | 122, | OOOOOO000 COO0OOO00000000000

o1 = ¢r(t) - alowpass 27 /T) filter, 15 := 1 (t) - a complex wavelet at scale A
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Feature extraction
@ Signals depend on impact velocity © and relative position @

@ Sound and seismic signals represent different physical quantities.
@ To cope, we rely on a "CNN-like” scattering trnsform (16).

v
Feature extraction up to the order p: : °
1: Sll(z):zz;T*\szl*zL o
2 8312 () = b [y * [, * 2.
2 5 (z) T * [, * [, * 2| _ po po
: le,.,.xp(m):

p: P % /)
1 x|y [y [xy w el . el o)

(1% 4hxs | s ]+ 4225 | OOOOO000O OOOOOOOO0O00000000

o1 = ¢r(t) - alowpass 27 /T) filter, 15 := 1 (t) - a complex wavelet at scale A

@ Computational cost increases with T' (“time-invariance”).

@ T « duration of a classified event (crucial for performancel). technicolor
L
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Feature extraction

Competing requirements for T':

@ Short (T ~ 0.15s): characterizes only
the footfall event, requires p = 1.

@ Large (T ~ 1.22s): captures also the
temporal dynamics, but violates LSA
and increases cost.

Can we avoid this fradeoff?

for Normalized scattering for gait signals

Ty = 0155
54107 !
] 1
o Ty 0.6s 5
1 T \ 2
0 ~'\/ ‘l/,‘/*'\,l..,_—-‘..w-..u../ \ H
: ] ]
| 1 <
5*104 :
o Yoz 04 0.6
1 1
Q" i Time (s)
|
{ |
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Feature extraction

Ti = 0.15s
Competing requirements for T': ; ;

5*10%
@ Sshort (T ~ 0.15s): characterizes only
the fooftfall event, requires p = 1.

@ Large (T ~ 1.22s): captures also the
temporal dynamics, but violates LSA S5+104
and increases cost. 0

=
Amplitude, V

Time (s)

Can we avoid this fradeoff? Eﬁ
1

Visual comparison - two p = 1 scattering matrices (audio): B

Invariances mostly due fo a global temporal offset!
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Feature extraction

Ti = 0.15s
Competing requirements for T': | ;
SE0 =
@ Short (T" ~ 0.15s): characterizes only ! (I,
the footfall event, requires p = 1. o-o'v’i' 08
@ Large (T ~ 1.22s): captures also the L
temporal dynamics, but violates LSA I !
and increases cost. o! o2
1 1
Can we avoid this fradeoff? \}'ﬁ :
1

Remedy - compute Fourier modulus across rows (fime).

0.4

Time (s)

0.6
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Amplitude, V
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Robust scattering features: normalized scattering

What about feature dependency on 7?
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Robust scattering features: normalized scattering

What about feature dependency on 7?

Normalized scattering

Under certain assumptions on h := h(t), it can be shown:

Spt P (hx 2) & [R(A)[Sp P (@),
then: N
AL Spl P (h ok ST, A
S (hx ) 1= —E— f ) ~ Gt (@),
Spb P (b )
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Robust scattering features: normalized scattering

What about feature dependency on 7?

Normalized scattering

Under certain assumptions on h := h(t), it can be shown:

St (hx ) & [h()ISp ™ (),
then: N
AL Sp 7P (hox ) EAL, A
St (hx ) = 2 ~ Gt (@),
Spb P (b )

Consequence: if LSA holds, normalized scattering features depend only on v(t)!

A cheap channel normalization fechnique - “scattering CMS”.
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Feature fusion

What about fusion?

@ Recall that g and zg have (approx) complementary frequency range.
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Feature fusion

What about fusion?
@ Recall that g and zg have (approx) complementary frequency range.

@ Hence, S‘fl (za) > 0and S‘fl (zg) > 0 should be complementary as well.

@ Due to channel normalization, 57! (zq) and $7 (zg) “live” in the same
feature space, we can simply sum them up':
M

aA aA
fused — aaST! (za) + agS7t (zg)

So(za) and So(xg) are concatenated to Sfﬁ;ed.

technicolor

! o, is a normalization constant
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Experiments

Experimental setup (17):
@ Data collected internally, on a prototype dual sensor setup.
@ 12 participants (8m and 4f), up to two types of shoes per person.
@ (Low noise) recordings in a carpet-covered room, on 3 different days?.
@ 6 persons randomly chosen for training the UBM.
@ From the remaining, randomly chosen 3 targets and 3 unknowns.
@ Hyperparameters: =, T, N (the number of retained coefficients after PCA).

technicolor

270 avoid environmental effects: 2 days for training. 3rd day for evaluation.
1717



Performance and wrap-up
©00000

Results

@ Performance metric: Equal Error Rate (EER), lower is better.
@ Median results for the best-performing N, after 100 random partitions.

T=15s

I Geophone [ | Audio Il Fused

30
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Results

@ Performance metric: Equal Error Rate (EER), lower is better.
@ Median results for the best-performing N, after 100 random partitions.

=158 =3
30 30
I Geophone [ | Audio Il Fused I Geophone [ ] Audio NI Fused
25 25
.20 .20
) )
o 4
i [
15 15
10 10
5 5
0.05 04 02 03 0.05 04 02 03
7[5 Ts

@ "Optimal” hyperparameters agree with predictions:

@ T on the order of the footfall impact duration.
@ Larger + degrades performance (violates LSA).
@ ‘“Richer” representations (i.e. audio and fused) favor larger N.
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Best setting for each modality

Classification with fused features:
@ exhibits the smallest variance,
@ is the most robust wrt parameterization.
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Summary

Bimodal gait-based identification wrap-up:

@ Confirmed identification by both sound and seismic observations.
@ Performance gradation: fused > sound > seismic.
@ Further research directions:

@ Recognition in noisy conditions and using cheap MEMS sensors.
o “Walker diarization”?

@ Relevance of the shoe type, gender and/or environment.

e A better way to fuse / extract features (new datasets), etc.
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