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Introduction

Identification is a core component in many applications:

Recommender systems,

Online banking and commerce,

Surveillance,

Gaming,

Administration etc.

Different biometrics: fingerprint, face, speech, retinal scan, gait (this work)...

Each comes with advantages and drawbacks, e.g. accuracy or intrusiveness.
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Gait-based identification

Prior art - various modalities exploited:

Video (silhouette) [1, 2]: high accuracy, privacy issues.

Mechanical force sensors [3, 4]: high setup cost.

Wearables [5, 6]: instrusive.

WiFi [7]: limited accuracy and range.

Sound [8, 9, 10, 11]: (assuming VAD) privacy-preserving, wideband,
widespread availability.

Seismic [12]: privacy-preserving, robust, secure, narrowband.

Complementary properties of sound and seismic cues indicate that a bimodal
approach may be effective.
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Gait-based idetification

Open set identification:
1 Identify a person, if coming from a known set.
2 Otherwise, decide that the person is unknown.

Addressed through GMM-UBM framework [13].

Remaining challenges:

No publicly available bimodal data.

- We recorded a small scale dataset (size precludes deep learning).

No generally acclaimed feature type.

- Tailored scattering transform [14] based features.

Seamless feature fusion?

- Surprisingly simple - stay tuned.
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Gait signals

Particle velocity:

v̂(ω) = F (v(t)) ∝ F
(∫

~FGRFdt

)
Footfall ≈ 0.15s.
Period ≈ 2× 0.61s. [15]

Acquired signals are band-passed and convoluted:
Sound, for 200Hz . ω . 20kHz:

x̂a(ω,~r(t)) = ĥa(ω,~r(t))v̂(ω) + êa(ω) = ĝa(ω,~r(t))
v̂(ω)

ẑ(ω)
+ êa(ω)

Seismic, for 20Hz . ω . 300Hz:

x̂g(ω,~r(t)) = ĥg(ω,~r(t))v̂(ω) + êg(ω) = Sgĝg(ω,~r(t))v̂(ω) + êg(ω).

Local stationarity assumption (LSA)

Within (short) temporal segment of duration τ :

ĝ·(ω,~r(t + t′)) ≈ ĝ·(ω,~r(t)), analogously ĥ·(ω,~r(t + t′)) ≈ ĥ·(ω,~r(t)).
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Feature extraction

Signals depend on impact velocity and relative position

Sound and seismic signals represent different physical quantities.

To cope, we rely on a “CNN-like” scattering trnsform [16].

Feature extraction up to the order p:

0: S0(x) = φT ∗ x,
1: S

λ1
1 (x) = φT ∗ |ψλ1 ∗ x|,

2: S
λ1,λ2
2 (x) = φT ∗ |ψλ2 ∗ |ψλ1 ∗ x||,

. . .
p: S

λ1,...λp
p (x) =

φT ∗ |ψp ∗ . . . |ψλ2 ∗ |ψλ1 ∗ x|| . . . |.

φT := φT (t) - a lowpass (2π/T ) filter, ψλ := ψλ(t) - a complex wavelet at scale λ

Rule of thumb

1 Computational cost increases with T (“time-invariance”).

2 T ∝ duration of a classified event (crucial for performance!).
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Feature extraction

Competing requirements for T :
1 Short (T ∼ 0.15s): characterizes only

the footfall event, requires p = 1.

2 Large (T ∼ 1.22s): captures also the
temporal dynamics, but violates LSA
and increases cost.

Can we avoid this tradeoff?

Visual comparison - two p = 1 scattering matrices (audio):
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Feature extraction

Competing requirements for T :
1 Short (T ∼ 0.15s): characterizes only

the footfall event, requires p = 1.

2 Large (T ∼ 1.22s): captures also the
temporal dynamics, but violates LSA
and increases cost.

Can we avoid this tradeoff?

Visual comparison - two p = 1 scattering matrices (audio):

Remedy - compute Fourier modulus across rows (time).
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Robust scattering features: normalized scattering

What about feature dependency on ~r?

Normalized scattering

Under certain assumptions on h := h(t), it can be shown:

S
λ1,...λp
p (h ∗ x) ≈ |ĥ(λ1)|S

λ1,...λp
p (x),

then:

S̃
λ1,...λp
p (h ∗ x) :=

S
λ1,...λp
p (h ∗ x)

S
λ1,...λp−1
p (h ∗ x)

≈ S̃λ1,...λp
p (x).

Consequence: if LSA holds, normalized scattering features depend only on v(t)!

A cheap channel normalization technique - “scattering CMS”.
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Feature fusion

What about fusion?

Recall that x̂a and x̂g have (approx) complementary frequency range.

Hence, S̃λ1
1 (xa) > 0 and S̃λ1

1 (xg) > 0 should be complementary as well.

Due to channel normalization, S̃λ1
1 (xa) and S̃λ1

1 (xg) “live” in the same
feature space, we can simply sum them up1:

S̃λ1
fused = αaS̃

λ1
1 (xa) + αgS̃

λ1
1 (xg)

S̃0(xa) and S̃0(xg) are concatenated to S̃λ1
fused.

1α· is a normalization constant
10 / 17



Introduction Normalized scattering for gait signals Performance and wrap-up

Feature fusion

What about fusion?

Recall that x̂a and x̂g have (approx) complementary frequency range.

Hence, S̃λ1
1 (xa) > 0 and S̃λ1

1 (xg) > 0 should be complementary as well.

Due to channel normalization, S̃λ1
1 (xa) and S̃λ1

1 (xg) “live” in the same
feature space, we can simply sum them up1:

S̃λ1
fused = αaS̃

λ1
1 (xa) + αgS̃

λ1
1 (xg)

S̃0(xa) and S̃0(xg) are concatenated to S̃λ1
fused.

1α· is a normalization constant
10 / 17



Introduction Normalized scattering for gait signals Performance and wrap-up

Experiments

Experimental setup [17]:

Data collected internally, on a prototype dual sensor setup.

12 participants (8m and 4f), up to two types of shoes per person.

(Low noise) recordings in a carpet-covered room, on 3 different days2.

6 persons randomly chosen for training the UBM.

From the remaining, randomly chosen 3 targets and 3 unknowns.

Hyperparameters: τ , T , N (the number of retained coefficients after PCA).

2To avoid environmental effects: 2 days for training, 3rd day for evaluation.
11 / 17
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Results

Performance metric: Equal Error Rate (EER), lower is better.

Median results for the best-performing N, after 100 random partitions.

“Optimal” hyperparameters agree with predictions:
1 T on the order of the footfall impact duration.
2 Larger τ degrades performance (violates LSA).
3 “Richer” representations (i.e. audio and fused) favor larger N.

12 / 17



Introduction Normalized scattering for gait signals Performance and wrap-up

Results

Performance metric: Equal Error Rate (EER), lower is better.

Median results for the best-performing N, after 100 random partitions.

“Optimal” hyperparameters agree with predictions:
1 T on the order of the footfall impact duration.
2 Larger τ degrades performance (violates LSA).
3 “Richer” representations (i.e. audio and fused) favor larger N.

12 / 17



Introduction Normalized scattering for gait signals Performance and wrap-up

Results

Best setting for each modality
Typical DET curves

Classification with fused features:

exhibits the smallest variance,

is the most robust wrt parameterization.
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Summary

Bimodal gait-based identification wrap-up:

Confirmed identification by both sound and seismic observations.

Performance gradation: fused > sound > seismic.
Further research directions:

Recognition in noisy conditions and using cheap MEMS sensors.
“Walker diarization”?
Relevance of the shoe type, gender and/or environment.
A better way to fuse / extract features (new datasets), etc.
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