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. Introduction: multiband spectrum sensing

. . X1 (] w
Sensing scenario 0

m Wide frequency band of interest W/ Jea

® N communication sub-bands 3
- a bandwidth of B = W/N 7

— central frequency f; —

m K out of N are occupied by

Tk (t) = {fk(t)C]Qﬂf’“L,

— fr € {fS}N_, - unknown
— Ty (t) are w.s.s. and unknown

fc.? fc‘ll ‘ 5(t)
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. Introduction: multiband spectrum sensing

. . XNy
Sensing scenario b @ (t)
, O
Jea &

m Wide frequency band of interest W/

® N communication sub-bands :
- a bandwidth of B = W/N 7
— central frequency f; —

m K out of N are occupied by %

Tk (t) = {fk(t)C]Qﬂf’“L,

— fr € {fS}N_, - unknown
— Ty (t) are w.s.s. and unknown

. o Sensor
A e
Sensing task

® Acquire s(t) = 25:1 zk(t) at a sub-Nyquist rate (on the order of K B rather than W)

® Find out which sub-bands are occupied, i.e., estimate f}.
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. Introduction: multiband sensing and TDOA estimation

]
az(t I,
m Multiple distributed time-synchronized wideband sensing nodes that exchange data with
each other (or some centralized processing unit)
|
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. Introduction: multiband sensing and TDOA estimation

]
=) - Z,?f]‘ g 3,9, (1=Tr 3,4)
3 o m(t
2,Q2) PN I X ()] %
> ' 2,2,Q2,2 Jeo
AT [ B 1201,
m» Sensor2 m’
B} Sensorl o e
Je2  fer 0) fe2 1
|

si(t 5a(t) 2 Qux
=3 T g, (T =2 ket 2ot W2k (E=Thp2)

m Multiple distributed time-synchronized wideband sensing nodes that exchange data with
each other (or some centralized processing unit)

B Qp,, < Q multipath components in the propagation channel from k-th source to p-th
sensor, each with an amplitude ay , , and a delay 74, 4
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. Multiband sensing and TDOA Estimation: problem formulation

Source signals:

B to each source signal x () corresponds an autocorrelation function Ry (7)

|
Ryi (1) = E{zp )z (t — 1)} = Frop(T)e?? BT
where 7y, (1) = E{Z; (t)Z;.(t — 7)} is the baseband autocorrelation function.
B we assume that Ry, i, (7) = E{wg, (t)2), (t —7)} =0V k1 # k.
]
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. Multiband sensing and TDOA Estimation: problem formulation

Source signals:
] = to each source signal x(t) corresponds an autocorrelation function Ry (7)
Ry (1) = E{ax ()2}, (¢ — 7)} = Fra ()T Ik T,
where 7y, (1) = E{Z; (t)Z;.(t — 7)} is the baseband autocorrelation function.
B we assume that Ry, i, (7) = E{wg, (t)2), (t —7)} =0V k1 # k.

Received signals:

Qp,k
m the noise-free signal at the p-th sensor s, (t) = > > ap p.qTr(t — Thpq) = > Tk, p(t)
k g=1 k
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. Multiband sensing and TDOA Estimation: problem formulation

Source signals:

B to each source signal x () corresponds an autocorrelation function Ry (7)

|
Ryi (1) = E{zp )z (t — 1)} = 'F‘kk(T)e]ZT‘f""T,
where 7y, (1) = E{Z; (t)Z;.(t — 7)} is the baseband autocorrelation function.
B we assume that Ry, i, (7) = E{wg, (t)2), (t —7)} =0V k1 # k.
Received signals:
Qyp .k
B the noise-free signal at the p-th sensor s, (1) = Z Z kp,qTh(t — Thyp,q) = 2 Tk p(t)
k

]

k g=1
m for any pair of sensors (p1,p2), we can calculate a cross-correlation function Ry, p,(7)
* ~( ) = ) 2
Rpy po (T) = E{sp, (t)sp2 (t—7)} = Z Z aAP;lPSZ Run (7 — ’//';1 /U Z FPLP2) (1 T

k q1,92 hv—/ k

relative delay
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. Multiband sensing and TDOA Estimation: problem formulation

Source signals:

B to each source signal x () corresponds an autocorrelation function Ry (7)

|
Riw(r) = E{ay ()2} (t — 1)} = Fop(r)e?2™e7,
where 7y, (1) = E{Z; (t)Z;.(t — 7)} is the baseband autocorrelation function.
B we assume that Ry, i, (7) = E{wg, (t)2), (t —7)} =0V k1 # k.
Received signals:
Qyp .k
m the noise-free signal at the p-th sensor s, (t) = > > ap p.qTr(t — Thpq) = > Tk, p(t)
k g=1 k

]

m for any pair of sensors (p1,p2), we can calculate a cross-correlation function Ry, p,(7)

~( ) - (P1,P2) =(P1,P2) 27 fpT
Rpy g (1) = E{sp, (57, (=)} = 3 37 a2 Ry (7 — 771 72) ) = S (7172 (1) e227 7
k 41,92 N e’ k

relative delay

Sensing task:

m detect which sub-bands are active from sub-Nyquist samples of s, (t)

B estimate relative autocorrelations ,‘]m P20 (1)
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. Sub-Nyquist receiver system: the MwcC®)

] LPE Modulated Wideband Converter:
X
Q\Qj —>{ — yi[n] m M sampling channels
tn = nTg X .
‘ h(t) B analog compression in each channel
S(t) pl( ) . . — mixing with periodic sequences
— : : P (t)
s — low-pass filtering with cut-off f./2
I LPF
m sampling at fs —
) /@—X — ym[n] M low-rate digital outputs Yy, [n]
c2 cl B
" tn = nT; .
wideband input H() nis ® total sampling rate of M fs vs. W
pum(t)
analog compression low-rate output

(1) M. Mishali and Y. C. Eldar. " From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals.” IEEE Journal of Selected Topics
in Signal Processing vol. 4, no. 2, 2010, pp. 375-391.
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. MWC operation in frequency domain

B analog mixing: p,,(t) is Tp-periodic — it can be
represented by Fourier series

|
oo
Pm(t) = D e’ T, where
l=—00
1 .
A T /p7wz(t)e_]2ﬂ£/PLdt — weighted “Dirac-comb

Py

|
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Ty-periodic +£1 mixing sequence py, (t)
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. MWC operation in frequency domain

Ty-periodic +£1 mixing sequence py, (t)

B analog mixing: p,,(t) is Tp-periodic — it can be L A
—— represented by Fourier series 5U UUU” l_J UU U JU t
L) Ty
pm(t) = Z c,,,MEJQ"UPt, where
l=—o00 Spectrum of pp, (t)
ot = - @) 700t weighted “Diraccomb ITTTJTJT»HTUTH it ],
T, 2W :

® multiplication in time <+ convolution in frequency:

~£/20 fj2 f
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. MWC operation in frequency domain

Ty-periodic +£1 mixing sequence py, (t)

B analog mixing: p,,(t) is Tp-periodic — it can be A
—— represented by Fourier series 5U UUU” l_J UU U JU t
L) Ty
pm(t) = Z c,,,MEJQ"UPt, where
l=—o00 Spectrum of pp, (t)
ot = - @) 700t weighted “Diraccomb ITTTJTJT»HTUTH i ],
T, 2w :

® multiplication in time <+ convolution in frequency:

B low-pass filtering: only the narrowband part of the

. AR —f20 f/2
mixture around the origin is kept

!

m low-rate sampling with f, = fs > B: each digital
output contains all spectral parts of the original
signal (rearranged and differently weighted)
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. MWC operation for time-delay estimation

m consider m-th digital output at p-th sensorl: Sp(f+ Lofp)

| yp,m(f) = [Cm‘flfoy e Cm0y - - Cm,,LU} Sp(f) = sz;u(f)

DTFT of yp,m [nTs Cm Sp(f o L(]fp)

zp(f),fE€EFs=[—fs/2,fs/2]

— Yp,m (f) is the DTFT of m-th discrete output of p-th sensor

— row-vector ¢, contains the Fourier coefficients of p,, (t)

— vector z,(f) contains f-shifted low-passed filtered copies of s, (f) = ffox Sp(t>672ﬂ-‘7ffdt
|

IFor simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.
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. MWC operation for time-delay estimation

. .. 1. S
m consider m-th digital output at p-th sensor-: Sp(f+ Lofp)
| yp,m(f) = [Cm‘flfoy e Cm0y - - Cm,,LU} Sp(f) = sz;u(f)
DTFT of yp,m [nTs Cm Sp(f o L(]fp)
zp(f),fE€EFs=[—fs/2,fs/2]
— Yp,m (f) is the DTFT of m-th discrete output of p-th sensor
— row-vector ¢, contains the Fourier coefficients of p,, (t)
— vector z,(f) contains f-shifted low-passed filtered copies of s, (f) = ffox Sp(t>672ﬂ-‘7ffdt
B in time domain: yp m[tn, = nTy] = '11‘5 Jemzp(e?™InTsdf = e 2zp[tn]
Ts N——
IDTFT of z, (f)
|

IFor simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.
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. MWC operation for time-delay estimation

m consider m-th digital output at p-th sensor?: Sp(f+ Lofp)
B ypm(f) = [C'nL‘flfoy cosCm,0y - Cm,,LU} Sp(f) = szp(f)
DTFT of yp,m [nTs Cm Sp(f_ L(]fp)
zp(f),fE€EFs=[—fs/2,fs/2]
— Yp,m (f) is the DTFT of m-th discrete output of p-th sensor
— row-vector ¢, contains the Fourier coefficients of p,, (t)
— vector z,(f) contains f-shifted low-passed filtered copies of s, (f) = ffox Sp(t>672ﬂ-‘7ffdt
B in time domain: yp m[tn, = nTy] = '11‘9 Jemzp(e?™InTsdf = e 2zp[tn]
T T S——
IDTFT of z, (f)
— since fr. € {f, fyzl and f, = fs > B, only K entries of z,[t,| are non-zero
K K K Qp,k
yp,rn[tn] = Z Cm, Ly, Zp by, [tn] = Z Crn.[kik,p[tn] = Z Cm, Ly, Z ak,p,qik[tn*‘rk,p,q}
k=1 k=1 k=1 =1
|

IFor simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.
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. MWC operation for time-delay estimation

m consider m-th digital output at p-th sensorl: Sp(f+ Lofp)

yp,m(f) = [Cm‘flfoy e Cm0y - - Cm,,LU} Sp(f) = szp(f)
——

DTFT of yp,m [nTk] Cm Sp(f - i‘(]fp)

zp(f),fE€EFs=[—fs/2,fs/2]
— Yp,m (f) is the DTFT of m-th discrete output of p-th sensor
— row-vector ¢, contains the Fourier coefficients of p,, (t)

— vector z,(f) contains f-shifted low-passed filtered copies of s, (f) = ffox Sp(t>672ﬂ-‘7ffdt

B in time domain: yp [t = nTs] = 11

g rzp(f)ejgﬂfn’rsdf =Cm zl)[t”]
N——
IDTFT of z, (f)
— since fi € {f” ey and f, = f5 > B, only K entries of zp[tn] are non-zero

<)/,7

Yp,m [tn] g Cm, ey, Zp,ey, [tn] = E Cm, e, Th,pltn] = E Cm,, 0y, flx,‘.,u,f‘x,‘[/n — Ti,p.ql

qg=1

IFor simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.
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. Estimation: joint recovery

B consider the cross-correlation between the i-th output of p;-th sensor and the j-th
output of po-th sensor:

K
P ) = By ilinlp, sln =]} = 30 wige, D0 8007 Tkl — TR
k=1 ~~—" q1,92 "
c"’[kc;,/k ";,M.“J‘,“’//J
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. Estimation: joint recovery

B consider the cross-correlation between the i-th output of p;-th sensor and the j-th
—— output of pa-th sensor:

K
PP ) = Eyp iltnluy, jltn=moly = 37 wige, D a0ate malry — Filata]
k=1 q1:92 —,—1

*
c; g, Ch (p1.p2)
0L S48y T |

(p1,p2)

Tv] together into one vector 7y [m0]:

B concatenate all cross-correlations 77} ’p2)[

2%

r§'m »P2) (1] = Wrém p2) (7]
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. Estimation: joint recovery

B consider the cross-correlation between the i-th output of p;-th sensor and the j-th
—— output of pa-th sensor:

K
2(1;1 pz)[ V) = B{yp, altnly), jltn—T0]} = Z Wi 0 Z al(cp;{p;z) Trk|mw — Tr()pél,y’);z)}
g B
41,92

*
c; g, Ch (p1.p2)
0L S48y T |

(Plvpz)[

B concatenate all cross-correlations ;" (P1, “)[

Tv] together into one vector 7y T

Té,pl ,p2) [7—1/] _ W,P(Zm p2) [T,/}

- p "m)[‘r ] is a K-sparse vector of length L that contains unknown relative autocorrelation

(m Pz)[T ]

functions 7, at the positions with indices /;,

— support of 'r'(pl 'P2) defines the central frequencies of the active sub-bands:

Ve, € SAfr =l fo
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. Estimation: joint recovery

B consider the cross-correlation between the i-th output of p;-th sensor and the j-th
—— output of pa-th sensor:

K
(P1,p2) i, * _ . ~(p1,p2) ~(p1,p2
1 P ) = By iltn]yp, jltn—m1} = D wige, D @082 Pkl — Talal
k=1 q1,92
* D o] -
Ci,ly %0y, /}" 1:P2) Tv)
B concatenate all cross-correlations rgpjl P2) [7,] together into one vector 1’§,p' P2) [0
i\

r§'m »P2) (1] = Wrém p2) (7]

- pp1r2) [7.] is a K -sparse vector of length L that contains unknown relative autocorrelation

(pq <P2)[TU]

functions 7, at the positions with indices /;,

— support of 'r'ipl 'P2) defines the central frequencies of the active sub-bands:
Vel € S3fr = Lifp

— W is a matrix comprised of elements w; ; ¢ such that its /-th column is

T
wye = |:7UIJ.£a cee s WL ML, W21,y - - sy W2 M Ly - - s WM 1,E5 - - -y wM,M,i]

M M M
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. Estimation: joint recovery

T)([Pl p2) [Tu] — W,,,;I?l p2) [Tu}
|

B typical sparse recovery problem — can be solved for each 7., independently

m we can apply the CTF block from (2)

(2) M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: compressed sensing for analog signals,” IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 993-1009, 2009.
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. Estimation: joint recovery

T)([Pl p2) [Tu] — W,,,;I?l p2) [Tu}

B typical sparse recovery problem — can be solved for each 7., independently

m we can apply the CTF block from (2)

Once the support S of 7‘9’1’[)2)[71,] is found we obtain

B the central frequencies of the active sub-bands
fk, :Ekf])v gk: €S

}(Cm ,p2) (7]

B the discrete baseband relative autocorrelation functions 7 as

<T;p11172))8 (] = W§T§P1,112)[TU]’

where for some vector a and matrix A the notation as and As means taking the entries of a and
the columns of A indexed by S, respectively.

(2) M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: compressed sensing for analog signals,” IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 993-1009, 2009.
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. Estimation: two-step recovery
Alternatively, we can

m first estimate the support S and the corresponding low-rate sequences zy, ,[tr] from the

|
outputs of individual sensors
B compute fif?l’p”[‘z—y} for each k independently
]
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. Estimation: two-step recovery
Alternatively, we can

m first estimate the support S and the corresponding low-rate sequences zy, ,[tr] from the

]
outputs of individual sensors
B compute féf?l‘pZ)[T,,} for each k independently
Estimation procedure:
m collect all M outputs Yy, m [tn] of the p-th sensor together into one vector yy [ty ]:
Ypltn] = [e1,-- - enr]” zp[tn]
—_————
: C
m find the support of z,[t,] from y,[t,]
— the support of z,[t,,] is also S
|

— as before, we can find it either for each t,, or by applying the CTF block
B estimate the individual low-rate sequences Zy, ,,[tx] via (2p)s[tn] = C;y,,[t,,,]

(p1,p2) [Tu}

m obtain baseband relative autocorrelations 7

PP (1] = B{Zg p, [tn) Tk g [tn — 7]}
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Numerical example: simulation setup

Sensing scenario:

B frequency band of W = 3.9 GHz is split

]
into N = 135 communication channels
B W is occupied by K = 3 BPSK modulated
signals x, (t)
— bandwidth of B = 20 MHz
— carrier fi chosen uniformly at random
from {f77}1771
Sensors:
B sensors operate with M/ = 20 sampling
channels
B the sampling rate is fo = 28 MHz
pm (t) are generated as pseudo-random
{il} piece-wise constant functions
|

B total sampling rate at each sensor is
560 MHz, which is 14% of the Nyquist rate

Introduction Sub-Nyquist receiver system Estimation methods
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Propagation parameters:

B number of multipath components is
Qr,p =2
B time delays 7% , ; and amplitudes ax ,
are chosen uniformly at random from
Nt 9Np
[To6» To0-) and [0.6, 1]

— N is the sensing time in samples

Performance metrics:

B support recover rate (SRR): [S N S|/K

B mean square error (MSE) between the true
and the estimated relative autocorrelation

functions:
i K NT |5 (pl,p2>[ L] — ,(m p2>[m”2
KNT p=1v=1 |7 (”l "”[T 112

Conclusions TECHNISCHE UNIVERSITAT
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. Numerical example: performance vs SNR

Np = 500 samples

| 1
0.8 | /‘/ —&— Joint recovery
’ - 4-- Two-step
0.6
g g
w0 =
0.4
0.2 ]
Y S O O S SN | b by
—10 -5 0 5 —10 -5 0 5
SNR, dB SNR, dB
(a) SRR (b) MSE

B two-step recovery approach provides somewhat higher SRR rate
o " joint estimation method provides slightly better accuracy in terms of fl(“m ’pZ)[ﬂ,]

recovery
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. Numerical example: performance vs sensing time

SNR =0 dB

— ) 16

—— Joint recovery e 14
-4 - Two-step 51)
=

2

7\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\O

200 400 600 800 1,000 200 400 600 800 1,000

N7, samples Nrp, samples
(a) SRR (b) MSE

B the same tendency

B two-step approach is less sensitive to sensing time duration for support recovery
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Conclusions

m we considered the task of relative autocorrelation estimation of multiple unknown

|
transmitters from the sub-Nyquist samples of wideband multiband signals obtained by a
network of spatially distributed sensing nodes.
® we showed that the central frequencies and the relative autocorrelation functions of the
individual transmissions can be estimated from the low-rate outputs of different sensors
|
]

and proposed two estimation methods
— joint recovery of the frequency support and the relative autocorrelation functions
— two-step approach

both proposed methods allow for central frequency and relative autocorrelation
estimation from sub-Nyquist samples

— the joint recovery yields an improved accuracy of the latter while being more sensitive with
respect to the sensing time
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Thank you! Questions?
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