Multiband TDOA Estimation from Sub-Nyquist Samples with Distributed Sensing Nodes

Anastasia Lavrenko, Florian Römer, Giovanni Del Galdo and Reiner Thomä

Tuesday, November 14, 16:00 - 17:30 GlobalSIP 2017, Montreal, Canada

Introduction: multiband spectrum sensing

$|X_1(f)||$ WSensing scenario $x_1(t)$ $|X_2(f)| = W$ Wide frequency band of interest WN communication sub-bands fc.2 - a bandwidth of B = W/N $\mathbf{o}^{x_2(t)}$ - central frequency f_n^c \blacksquare K out of N are occupied by |S(f)| $x_k(t) = \bar{x}_k(t)e^{j2\pi f_k t}.$ W $-f_k \in \{f_n^c\}_{n=1}^N$ - unknown - $\bar{x}_k(t)$ are w.s.s. and unknown Sensor $f_{\rm c,2}$ $f_{\rm c,1}$ s(t)

Introduction: multiband spectrum sensing

$|X_1(f)||$ W Sensing scenario $x_1(t)$ $|X_2(f)| = W$ Wide frequency band of interest WN communication sub-bands $f_{c,2}$ $(\mathbf{o}^{x_2(t)})$ - a bandwidth of B = W/N- central frequency f_n^c \blacksquare K out of N are occupied by $\land |S(f)|$ $x_k(t) = \bar{x}_k(t) e^{j2\pi f_k t},$ W $-f_k \in \{f_n^c\}_{n=1}^N$ - unknown - $\bar{x}_k(t)$ are w.s.s. and unknown Sensor $f_{c,2}$ $f_{\rm c,1}$ s(t)

Sensing task

- Acquire $s(t) = \sum_{k=1}^{K} x_k(t)$ at a sub-Nyquist rate (on the order of KB rather than W)
- Find out which sub-bands are occupied, i.e., estimate f_k .

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
0	000	00	000	
0		0		

Introduction: multiband sensing and TDOA estimation

 Multiple distributed time-synchronized wideband sensing nodes that exchange data with each other (or some centralized processing unit)

Introduction: multiband sensing and TDOA estimation

- Multiple distributed time-synchronized wideband sensing nodes that exchange data with each other (or some centralized processing unit)
- $Q_{k,p} \leq Q$ multipath components in the propagation channel from k-th source to p-th sensor, each with an amplitude $a_{k,p,q}$ and a delay $\tau_{k,p,q}$

 Introduction
 Sub-Nyquist receiver system
 Estimation methods
 Numerical Example
 Conclusions

 ○●
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

CC TECHNISCHE UNIVERSITÄT ILMENAU

Source signals:

• to each source signal $x_k(t)$ corresponds an autocorrelation function $R_{kk}(\tau)$

$$R_{kk}(\tau) = \mathbb{E}\{x_k(t)x_k^*(t-\tau)\} = \bar{r}_{kk}(\tau)e^{j2\pi f_k\tau}$$

where $\bar{r}_{kk}(\tau) = \mathbb{E}\{\bar{x}_k(t)\bar{x}_k^*(t-\tau)\}\$ is the baseband autocorrelation function.

• we assume that $R_{k_1k_2}(\tau) = \mathbb{E}\{x_{k_1}(t)x_{k_2}^*(t-\tau)\} \equiv 0 \ \forall \ k_1 \neq k_2.$

Source signals:

• to each source signal $x_k(t)$ corresponds an autocorrelation function $R_{kk}(\tau)$

$$R_{kk}(\tau) = \mathbb{E}\{x_k(t)x_k^*(t-\tau)\} = \bar{r}_{kk}(\tau)e^{j2\pi f_k\tau},$$

where $\bar{r}_{kk}(\tau) = \mathbb{E}\{\bar{x}_k(t)\bar{x}_k^*(t-\tau)\}\$ is the baseband autocorrelation function.

• we assume that $R_{k_1k_2}(\tau) = \mathbb{E}\{x_{k_1}(t)x_{k_2}^*(t-\tau)\} \equiv 0 \ \forall \ k_1 \neq k_2.$

Received signals:

• the noise-free signal at the *p*-th sensor $s_p(t) = \sum_k \sum_{q=1}^{Q_{p,k}} a_{k,p,q} x_k(t - \tau_{k,p,q}) = \sum_k x_{k,p}(t)$

Source signals:

• to each source signal $x_k(t)$ corresponds an autocorrelation function $R_{kk}(\tau)$

$$R_{kk}(\tau) = \mathbb{E}\{x_k(t)x_k^*(t-\tau)\} = \bar{r}_{kk}(\tau)e^{j2\pi f_k\tau}$$

where $\bar{r}_{kk}(\tau) = \mathbb{E}\{\bar{x}_k(t)\bar{x}_k^*(t-\tau)\}$ is the baseband autocorrelation function.

• we assume that $R_{k_1k_2}(\tau) = \mathbb{E}\{x_{k_1}(t)x_{k_2}^*(t-\tau)\} \equiv 0 \ \forall \ k_1 \neq k_2.$

Received signals:

• the noise-free signal at the *p*-th sensor $s_p(t) = \sum_k \sum_{q=1}^{Q_{p,k}} a_{k,p,q} x_k(t - \tau_{k,p,q}) = \sum_k x_{k,p}(t)$

for any pair of sensors (p_1, p_2) , we can calculate a cross-correlation function $R_{p_1, p_2}(\tau)$

$$R_{p_1,p_2}(\tau) = \mathbb{E}\{s_{p_1}(t)s_{p_2}^*(t-\tau)\} = \sum_k \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} R_{kk}(\tau - \frac{\tilde{\tau}_{k,q_1,q_2}^{(p_1,p_2)}}{\sum_{k} r_k^{(p_1,p_2)}(\tau)}) = \sum_k \bar{\tau}_k^{(p_1,p_2)}(\tau) e^{j2\pi f_k \tau}$$

Source signals:

• to each source signal $x_k(t)$ corresponds an autocorrelation function $R_{kk}(\tau)$

$$R_{kk}(\tau) = \mathbb{E}\{x_k(t)x_k^*(t-\tau)\} = \bar{r}_{kk}(\tau)e^{j2\pi f_k\tau},$$

where $\bar{r}_{kk}(\tau) = \mathbb{E}\{\bar{x}_k(t)\bar{x}_k^*(t-\tau)\}\$ is the baseband autocorrelation function.

• we assume that $R_{k_1k_2}(\tau) = \mathbb{E}\{x_{k_1}(t)x_{k_2}^*(t-\tau)\} \equiv 0 \ \forall \ k_1 \neq k_2.$

Received signals:

- the noise-free signal at the *p*-th sensor $s_p(t) = \sum_{k=0}^{Q_{p,k}} a_{k,p,q} x_k(t-\tau_{k,p,q}) = \sum_{k=0}^{\infty} x_{k,p}(t)$
- for any pair of sensors (p_1, p_2) , we can calculate a cross-correlation function $R_{p_1, p_2}(\tau)$

$$\begin{split} R_{p_1,p_2}(\tau) &= \mathbb{E}\{s_{p_1}(t)s_{p_2}^*(t-\tau)\} = \sum_k \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} R_{kk}(\tau - \underbrace{\tilde{\tau}_{k,q_1,q_2}^{(p_1,p_2)}}_{\text{relative delay}}) = \sum_k \bar{r}_k^{(p_1,p_2)}(\tau) e^{j2\pi f_k \tau} \end{split}$$
Sensing task:

 $\begin{array}{c} \bullet \quad \text{detect which sub-bands are active} \\ \bullet \quad \text{estimate relative autocorrelations } \bar{r}_k^{(p_1,p_2)}(\tau) \end{array} \right\} \text{ from sub-Nyquist samples of } s_p(t) \\ \end{array}$

Sub-Nyquist receiver system Estimation methods Numerical Example Conclusions

Sub-Nyquist receiver system: the $MWC^{(1)}$

Modulated Wideband Converter:

- M sampling channels
- analog compression in each channel
 - mixing with periodic sequences $p_m(t)$
 - low-pass filtering with cut-off $f_{\rm\scriptscriptstyle S}/2$
- \blacksquare total sampling rate of $Mf_{
 m s}$ vs. W

(1) M. Mishali and Y. C. Eldar. "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals." IEEE Journal of Selected Topics in Signal Processing vol. 4, no. 2, 2010, pp. 375-391.

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	•00	00 0	000	

MWC operation in frequency domain

 \blacksquare analog mixing: $p_m(t)$ is $T_{\rm p}\text{-periodic} \rightarrow$ it can be represented by Fourier series

$$p_m(t) = \sum_{\ell=-\infty}^{\infty} c_{m,\ell} e^{\jmath 2\pi \ell f_{\rm p} t}, \ {\rm where} \label{eq:pm}$$

$$c_{m,\ell} = rac{1}{T_{
m p}} \int\limits_{T_{
m p}} p_m(t) e^{-\jmath 2 \pi \ell f_{
m p} t} {
m d}t$$
 – weighted "Dirac-comb

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	000	00 0	000	

MWC operation in frequency domain

 \blacksquare analog mixing: $p_m(t)$ is $T_{\rm p}\text{-periodic} \rightarrow$ it can be represented by Fourier series

$$p_m(t) = \sum_{\ell=-\infty}^{\infty} c_{m,\ell} e^{\jmath 2\pi \ell f_{\rm p} t}, \ {\rm where} \label{eq:pm}$$

$$c_{m,\ell} = \frac{1}{T_{\rm p}} \int_{T_{\rm p}} p_m(t) e^{-\jmath 2\pi \ell f_{\rm p} t} \mathrm{d}t - \text{weighted "Dirac-comb}$$

 \blacksquare multiplication in time \leftrightarrow convolution in frequency:

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions	TECHNISCHE UNIVERSITÄT
00 0	000	00 0	000		ILMENAU

MWC operation in frequency domain

analog mixing: $p_m(t)$ is T_p -periodic \rightarrow it can be represented by Fourier series

$$p_m(t) = \sum_{\ell=-\infty}^{\infty} c_{m,\ell} e^{\jmath 2\pi \ell f_{\rm p} t}, \text{ where }$$

$$c_{m,\ell} = \frac{1}{T_{\rm p}} \int_{T_{\rm p}} p_m(t) e^{-\jmath 2\pi \ell f_{\rm p} t} \mathrm{d}t - \text{weighted "Dirac-comb}$$

- low-pass filtering: only the narrowband part of the mixture around the origin is kept
- low-rate sampling with $f_{\rm D} = f_{\rm s} \ge B$: each digital output contains all spectral parts of the original signal (rearranged and differently weighted)

TECHNISCHE UNIVERSITÄT ILMENAU

- $y_{p,m}(f)$ is the DTFT of m-th discrete output of p-th sensor
- row-vector $oldsymbol{c}_m$ contains the Fourier coefficients of $p_m(t)$
- vector $z_p(f)$ contains f_p -shifted low-passed filtered copies of $s_p(f) = \int_{-\infty}^{\infty} s_p(t) e^{-2\pi j f t} dt$

¹For simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.

 Introduction
 Sub-Nyquist receiver system
 Estimation methods
 Numerical Example
 Conclusions

 00
 00
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

• consider *m*-th digital output at *p*-th sensor¹:

$$\underbrace{y_{p,m}(f)}_{\text{DTFT of } y_{p,m}[nT_s]} = \underbrace{[c_{m,-L_0}, \dots, c_{m,0}, \dots c_{m,L_0}]}_{c_m} \xrightarrow{\sum_{p(f), f \in \mathcal{F}_s = [-f_s/2, f_s/2]}} = c_m z_p(f)$$

- $y_{p,m}(f)$ is the DTFT of *m*-th discrete output of *p*-th sensor
- row-vector c_m contains the Fourier coefficients of $p_m(t)$
- vector $z_p(f)$ contains f_p -shifted low-passed filtered copies of $s_p(f) = \int_{-\infty}^{\infty} s_p(t) e^{-2\pi j f t} dt$

in time domain:
$$y_{p,m}[t_n = nT_s] = \frac{1}{T_s} \int_{T_s} c_m z_p(f) e^{j2\pi f nT_s} df = c_m \underbrace{z_p[t_n]}_{\text{IDTFT of } z_p(f)}$$

¹For simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.

 Introduction
 Sub-Nyquist receiver system
 Estimation methods
 Numerical Example
 Conclusions

 OO
 OO

cons

onsider *m*-th digital output at *p*-th sensor¹:

$$\underbrace{y_{p,m}(f)}_{\text{DTFT of } y_{p,m}[nT_{s}]} = \underbrace{[c_{m,-L_{0}}, \dots, c_{m,0}, \dots c_{m,L_{0}}]}_{\mathbf{c}_{m}} \underbrace{\begin{bmatrix}S_{p}(f + L_{0}f_{p})\\ \dots\\ S_{p}(f)\\ \dots\\ S_{p}(f - L_{0}f_{p})\end{bmatrix}}_{\mathbf{z}_{p}(f), f \in \mathcal{F}_{s} = [-f_{s}/2, f_{s}/2]} = \mathbf{c}_{m} \mathbf{z}_{p}(f)$$

- $y_{p,m}(f)$ is the DTFT of *m*-th discrete output of *p*-th sensor
- row-vector \boldsymbol{c}_m contains the Fourier coefficients of $p_m(t)$
- vector $z_p(f)$ contains f_p -shifted low-passed filtered copies of $s_p(f) = \int_{-\infty}^{\infty} s_p(t) e^{-2\pi j f t} dt$

In time domain:
$$y_{p,m}[t_n = nT_s] = \frac{1}{T_s} \int_{T_s} c_m z_p(f) e^{j2\pi f nT_s} df = c_m \underbrace{z_p[t_n]}_{\text{IDTFT of } z_p(f)}$$

- since $f_k \in \{f_n^c\}_{n=1}^N$ and $f_p = f_s \ge B$, only K entries of $\boldsymbol{z}_p[t_n]$ are non-zero

$$y_{p,m}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} z_{p,\ell_k}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} \bar{x}_{k,p}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} \sum_{q=1}^{Q_{p,k}} a_{k,p,q} \bar{x}_k[t_n - \tau_{k,p,q}]$$

¹For simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	00•	00 0	000	

cons

onsider *m*-th digital output at *p*-th sensor¹:

$$\underbrace{y_{p,m}(f)}_{\text{DTFT of } y_{p,m}[nT_{s}]} = \underbrace{[c_{m,-L_{0}}, \dots, c_{m,0}, \dots c_{m,L_{0}}]}_{\mathbf{c}_{m}} \underbrace{\begin{bmatrix}S_{p}(f + L_{0}f_{p})\\ \dots\\ S_{p}(f)\\ \dots\\ S_{p}(f - L_{0}f_{p})\end{bmatrix}}_{\mathbf{z}_{p}(f), f \in \mathcal{F}_{s} = [-f_{s}/2, f_{s}/2]} = \mathbf{c}_{m} \mathbf{z}_{p}(f)$$

- $y_{p,m}(f)$ is the DTFT of *m*-th discrete output of *p*-th sensor
- row-vector \boldsymbol{c}_m contains the Fourier coefficients of $p_m(t)$
- vector $z_p(f)$ contains f_p -shifted low-passed filtered copies of $s_p(f) = \int_{-\infty}^{\infty} s_p(t) e^{-2\pi j f t} dt$

In time domain:
$$y_{p,m}[t_n = nT_s] = \frac{1}{T_s} \int_{T_s} c_m z_p(f) e^{j2\pi f nT_s} df = c_m \underbrace{z_p[t_n]}_{\text{IDTFT of } z_p(f)}$$

- since $f_k \in \{f_n^c\}_{n=1}^N$ and $f_p = f_s \ge B$, only K entries of $\boldsymbol{z}_p[t_n]$ are non-zero

$$y_{p,m}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} z_{p,\ell_k}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} \bar{x}_{k,p}[t_n] = \sum_{k=1}^{K} c_{m,\ell_k} \sum_{q=1}^{Q_{p,k}} a_{k,p,q} \bar{x}_k[t_n - \tau_{k,p,q}]$$

¹For simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00	000	00	000	

ILMENAU

■ consider the cross-correlation between the *i*-th output of *p*₁-th sensor and the *j*-th output of *p*₂-th sensor:

$$r_{i,j}^{(p_1,p_2)}[\tau_{\nu}] = \mathbb{E}\{y_{p_1,i}[t_n]y_{p_2,j}^*[t_n-\tau_{\nu}]\} = \sum_{k=1}^K \underbrace{w_{i,j,\ell_k}}_{c_{i,\ell_k}c_{j,\ell_k}^*} \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} \underbrace{\bar{\tau}_{kk}[\tau_{\nu} - \tilde{\tau}_{n,q_1,q_2}^{(p_1,p_2)}]}_{\bar{\tau}_k^{(p_1,p_2)}[\tau_{\nu}]}$$

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	000	• • •	000	

consider the cross-correlation between the *i*-th output of p₁-th sensor and the *j*-th output of p₂-th sensor:

$$r_{i,j}^{(p_1,p_2)}[\tau_{\nu}] = \mathbb{E}\{y_{p_1,i}[t_n]y_{p_2,j}^*[t_n-\tau_{\nu}]\} = \sum_{k=1}^{K} \underbrace{w_{i,j,\ell_k}}_{c_{i,\ell_k}c_{j,\ell_k}^*} \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} \underbrace{\bar{r}_{kk}[\tau_{\nu} - \tilde{\tau}_{n,q_1,q_2}^{(p_1,p_2)}]}_{\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]}$$

• concatenate all cross-correlations $r_{i,j}^{(p_1,p_2)}[\tau_{\nu}]$ together into one vector $r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}]$:

 $r_{\mathbf{y}}^{(p_1,p_2)}[au_{
u}] = W r_{\mathbf{z}}^{(p_1,p_2)}[au_{
u}]$

consider the cross-correlation between the *i*-th output of p₁-th sensor and the *j*-th output of p₂-th sensor:

$$r_{i,j}^{(p_1,p_2)}[\tau_{\nu}] = \mathbb{E}\{y_{p_1,i}[t_n]y_{p_2,j}^*[t_n-\tau_{\nu}]\} = \sum_{k=1}^{K} \underbrace{w_{i,j,\ell_k}}_{c_{i,\ell_k}c_{j,\ell_k}^*} \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} \underbrace{\bar{r}_{kk}[\tau_{\nu} - \tilde{\tau}_{n,q_1,q_2}^{(p_1,p_2)}]}_{\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]}$$

• concatenate all cross-correlations $r_{i,j}^{(p_1,p_2)}[\tau_{\nu}]$ together into one vector $r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}]$:

$$r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}] = W r_{\mathbf{z}}^{(p_1,p_2)}[\tau_{\nu}]$$

- $r_z^{(p_1,p_2)}[\tau_{\nu}]$ is a K-sparse vector of length L that contains unknown relative autocorrelation functions $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$ at the positions with indices ℓ_k
- support of $r_{\mathbf{z}}^{(p_1,p_2)}$ defines the central frequencies of the active sub-bands: $\forall \ell_k \in S \exists f_k = \ell_k f_p$

consider the cross-correlation between the *i*-th output of p₁-th sensor and the *j*-th output of p₂-th sensor:

$$r_{i,j}^{(p_1,p_2)}[\tau_{\nu}] = \mathbb{E}\{y_{p_1,i}[t_n]y_{p_2,j}^*[t_n-\tau_{\nu}]\} = \sum_{k=1}^{K} \underbrace{w_{i,j,\ell_k}}_{c_{i,\ell_k}c_{j,\ell_k}^*} \sum_{q_1,q_2} \tilde{a}_{k,q_1,q_2}^{(p_1,p_2)} \underbrace{\bar{r}_{kk}[\tau_{\nu} - \tilde{\tau}_{n,q_1,q_2}^{(p_1,p_2)}]}_{\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]}$$

• concatenate all cross-correlations $r_{i,j}^{(p_1,p_2)}[\tau_{\nu}]$ together into one vector $r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}]$:

$$r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}] = W r_{\mathbf{z}}^{(p_1,p_2)}[\tau_{\nu}]$$

- $r_z^{(p_1,p_2)}[\tau_{\nu}]$ is a K-sparse vector of length L that contains unknown relative autocorrelation functions $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$ at the positions with indices ℓ_k
- support of $r_{\mathbf{z}}^{(p_1,p_2)}$ defines the central frequencies of the active sub-bands: $\forall \ell_k \in S \exists f_k = \ell_k f_p$
- W is a matrix comprised of elements $w_{i,j,\ell}$ such that its ℓ -th column is

$$\boldsymbol{w}_{\ell} = \left[\underbrace{w_{1,1,\ell}, \dots, w_{1,M,\ell}}_{M}, \underbrace{w_{2,1,\ell}, \dots, w_{2,M,\ell}}_{M}, \dots, \underbrace{w_{M,1,\ell}, \dots, w_{M,M,\ell}}_{M}\right]^{\mathrm{T}}$$

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	000	• 0 0	000	

$$r_{\mathbf{y}}^{(p_1,p_2)}[au_{
u}] = W r_{\mathbf{z}}^{(p_1,p_2)}[au_{
u}]$$

• typical sparse recovery problem \rightarrow can be solved for each τ_{ν} independently

we can apply the CTF block from (2)

(2) M. Mishali and Y. C. Eldar, "Blind multiband signal reconstruction: compressed sensing for analog signals," *IEEE Transactions on Signal Processing*, vol. 57, no. 3, pp. 993–1009, 2009.

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00	000	00	000	
0		0		

$$r_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}] = W r_{\mathbf{z}}^{(p_1,p_2)}[\tau_{\nu}]$$

 \blacksquare typical sparse recovery problem \rightarrow can be solved for each τ_{ν} independently

we can apply the CTF block from (2)

Once the support ${\mathcal S}$ of $r_{{f z}}^{(p_1,p_2)}[au_
u]$ is found we obtain

the central frequencies of the active sub-bands

$$f_k = \ell_k f_{\rm P}, \ \ell_k \in \mathcal{S}$$

• the discrete baseband relative autocorrelation functions $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$ as

$$\left(\boldsymbol{r}_{\mathbf{z}}^{(p_1,p_2)}\right)_{\mathcal{S}}[\tau_{\nu}] = \boldsymbol{W}_{\mathcal{S}}^{\dagger}\boldsymbol{r}_{\mathbf{y}}^{(p_1,p_2)}[\tau_{\nu}],$$

where for some vector a and matrix A the notation a_S and A_S means taking the entries of a and the columns of A indexed by S, respectively.

(2) M. Mishali and Y. C. Eldar, "Blind multiband signal reconstruction: compressed sensing for analog signals," IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 993–1009, 2009.

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00 0	000	0 0 0	000	

Estimation: two-step recovery

Alternatively, we can

- first estimate the support S and the corresponding low-rate sequences $\bar{x}_{k,p}[t_n]$ from the outputs of individual sensors
- compute $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$ for each k independently

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00	000	00	000	
0				

Estimation: two-step recovery

Alternatively, we can

- first estimate the support S and the corresponding low-rate sequences $\bar{x}_{k,p}[t_n]$ from the outputs of individual sensors
- compute $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$ for each k independently

Estimation procedure:

• collect all M outputs $y_{p,m}[t_n]$ of the p-th sensor together into one vector $y_p[t_n]$:

$$\boldsymbol{y}_p[t_n] = \underbrace{[\boldsymbol{c}_1, \cdots, \boldsymbol{c}_M]^{\mathrm{T}}}_{\boldsymbol{C}} \boldsymbol{z}_p[t_n]$$

- **a** find the support of $\boldsymbol{z}_p[t_n]$ from $\boldsymbol{y}_p[t_n]$
 - the support of $\boldsymbol{z}_p[t_n]$ is also $\mathcal S$
 - as before, we can find it either for each t_n or by applying the CTF block
- estimate the individual low-rate sequences $\bar{x}_{k,p}[t_n]$ via $(\boldsymbol{z}_p)_{\mathcal{S}}[t_n] = \boldsymbol{C}_{\mathcal{S}}^{\dagger} \boldsymbol{y}_p[t_n]$
- obtain baseband relative autocorrelations $\bar{r}_k^{(p_1,p_2)}[\tau_{\nu}]$

$$\bar{r}_{k}^{(p_{1},p_{2})}[\tau_{\nu}] = \mathbb{E}\{\bar{x}_{k,p_{1}}[t_{n}]\bar{x}_{k,p_{2}}[t_{n}-\tau_{\nu}]\}$$

 Introduction
 Sub-Nyquist receiver system
 Estimation methods
 Numerical Example
 Conclusions

 OO
 OO
 OO
 OO
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Numerical example: simulation setup

Sensing scenario:

- frequency band of W = 3.9 GHz is split into N = 135 communication channels
- W is occupied by K = 3 BPSK modulated signals $x_k(t)$
 - bandwidth of B = 20 MHz
 - carrier f_k chosen uniformly at random from $\{f_n^c\}_{n=1}^N$

Propagation parameters:

- number of multipath components is Q_{k,p} = 2
- $\label{eq:constraint} \begin{array}{|c|c|c|} \hline & \mbox{time delays } \tau_{k,p,q} \mbox{ and amplitudes } a_{k,p,q} \\ \mbox{are chosen uniformly at random from} \\ [\frac{N_{\rm T}}{100} , \frac{9N_{\rm T}}{100}] \mbox{ and } [0.6,1] \end{array}$
 - N_{T} is the sensing time in samples

Sensors:

- sensors operate with M = 20 sampling channels
- the sampling rate is $f_s = 28 \text{ MHz}$
- p_m(t) are generated as pseudo-random {±1} piece-wise constant functions
- total sampling rate at each sensor is 560 MHz, which is 14% of the Nyquist rate

Performance metrics:

- support recover rate (SRR): $|\hat{S} \cap S|/K$
- mean square error (MSE) between the true and the estimated relative autocorrelation functions:

$$\frac{1}{KN_{\mathrm{T}}} \sum_{k=1}^{K} \sum_{\nu=1}^{N_{\mathrm{T}}} \frac{|\bar{r}_{k}^{(p_{1},p_{2})}[\tau_{\nu}] - \hat{\bar{r}}_{k}^{(p_{1},p_{2})}[\tau_{\nu}]|^{2}}{|\bar{r}_{k}^{(p_{1},p_{2})}[\tau_{\nu}]|^{2}}$$

Numerical example: performance vs SNR

$N_T = 500$ samples

- two-step recovery approach provides somewhat higher SRR rate
- \blacksquare joint estimation method provides slightly better accuracy in terms of $\bar{r}_k^{(p_1,p_2)}[\tau_\nu]$ recovery

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00	000	00	000	
0		0		

Numerical example: performance vs sensing time

 $\mathsf{SNR}=0~\mathsf{dB}$

- the same tendency
- two-step approach is less sensitive to sensing time duration for support recovery

Introduction	Sub-Nyquist receiver system	Estimation methods	Numerical Example	Conclusions
00	000	00	000	

CC TECHNISCHE UNIVERSITÄT ILMENAU 12/14

Conclusions

we considered the task of relative autocorrelation estimation of multiple unknown transmitters from the sub-Nyquist samples of wideband multiband signals obtained by a network of spatially distributed sensing nodes.

- we showed that the central frequencies and the relative autocorrelation functions of the individual transmissions can be estimated from the low-rate outputs of different sensors and proposed two estimation methods
 - joint recovery of the frequency support and the relative autocorrelation functions
 - two-step approach
- both proposed methods allow for central frequency and relative autocorrelation estimation from sub-Nyquist samples
 - the joint recovery yields an improved accuracy of the latter while being more sensitive with respect to the sensing time

Thank you! Questions?

 Introduction
 Sub-Nyquist receiver system
 Estimation methods
 Numerical Example
 Conclusions

 00
 000
 000
 000
 0
 0

