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Tuesday, November 14, 16:00 - 17:30
GlobalSIP 2017, Montreal, Canada



Introduction: multiband spectrum sensing

Sensing scenario

� Wide frequency band of interest W

� N communication sub-bands
– a bandwidth of B = W/N

– central frequency fc
n

� K out of N are occupied by

xk(t) = x̄k(t)e2πfkt,

– fk ∈ {fc
n}
N
n=1 - unknown

– x̄k(t) are w.s.s. and unknown

Sensing task

� Acquire s(t) =
∑K
k=1 xk(t) at a sub-Nyquist rate (on the order of KB rather than W )

� Find out which sub-bands are occupied, i.e., estimate fk.
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Introduction: multiband sensing and TDOA estimation

� Multiple distributed time-synchronized wideband sensing nodes that exchange data with
each other (or some centralized processing unit)

� Qk,p ≤ Q multipath components in the propagation channel from k-th source to p-th
sensor, each with an amplitude ak,p,q and a delay τk,p,q
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Multiband sensing and TDOA Estimation: problem formulation

Source signals:

� to each source signal xk(t) corresponds an autocorrelation function Rkk(τ)

Rkk(τ) = E{xk(t)x∗k(t− τ)} = r̄kk(τ)e2πfkτ ,

where r̄kk(τ) = E{x̄k(t)x̄∗k(t− τ)} is the baseband autocorrelation function.

� we assume that Rk1k2
(τ) = E{xk1

(t)x∗k2
(t− τ)} ≡ 0 ∀ k1 6= k2.

Received signals:

� the noise-free signal at the p-th sensor sp(t) =
∑
k

Qp,k∑
q=1

ak,p,qxk(t− τk,p,q) =
∑
k

xk,p(t)

� for any pair of sensors (p1, p2), we can calculate a cross-correlation function Rp1,p2 (τ)

Rp1,p2
(τ) = E{sp1

(t)s
∗
p2

(t−τ)} =
∑
k

∑
q1,q2

ã
(p1,p2)

k,q1,q2
Rkk(τ− τ̃(p1,p2)

k,q1,q2︸ ︷︷ ︸
relative delay

) =
∑
k

r̄
(p1,p2)

k (τ)e
2πfkτ

Sensing task:

� detect which sub-bands are active

� estimate relative autocorrelations r̄
(p1,p2)
k (τ)

from sub-Nyquist samples of sp(t)
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Sub-Nyquist receiver system: the MWC(1)

wideband input

analog compression low-rate output

Modulated Wideband Converter:

� M sampling channels

� analog compression in each channel
– mixing with periodic sequences
pm(t)

– low-pass filtering with cut-off fs/2

� sampling at fs →
M low-rate digital outputs ym[n]

� total sampling rate of Mfs vs. W

(1)M. Mishali and Y. C. Eldar. ”From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals.” IEEE Journal of Selected Topics
in Signal Processing vol. 4, no. 2, 2010, pp. 375-391.
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MWC operation in frequency domain

� analog mixing: pm(t) is Tp-periodic → it can be
represented by Fourier series

pm(t) =
∞∑

`=−∞
cm,`e

2π`fpt, where

cm,` =
1

Tp

∫
Tp

pm(t)e−2π`fptdt – weighted “Dirac-comb”

� multiplication in time ↔ convolution in frequency:

� low-pass filtering: only the narrowband part of the
mixture around the origin is kept

� low-rate sampling with fp = fs ≥ B: each digital
output contains all spectral parts of the original
signal (rearranged and differently weighted)
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MWC operation for time-delay estimation

� consider m-th digital output at p-th sensor1:

yp,m(f)︸ ︷︷ ︸
DTFT of yp,m[nTs]

= [cm,−L0
, . . . , cm,0, . . . cm,L0

]︸ ︷︷ ︸
cm


Sp(f + L0fp)

. . .
Sp(f)
. . .

Sp(f − L0fp)


︸ ︷︷ ︸

zp(f),f∈Fs=[−fs/2,fs/2]

= cmzp(f)

– yp,m(f) is the DTFT of m-th discrete output of p-th sensor

– row-vector cm contains the Fourier coefficients of pm(t)

– vector zp(f) contains fp-shifted low-passed filtered copies of sp(f) =
∫∞
−∞ sp(t)e−2πftdt

� in time domain: yp,m[tn = nTs] = 1
Ts

∫
Ts

cmzp(f)e2πfnTsdf = cm zp[tn]︸ ︷︷ ︸
IDTFT of zp(f)

– since fk ∈ {fc
n}
N
n=1 and fp = fs ≥ B, only K entries of zp[tn] are non-zero

yp,m[tn] =
K∑
k=1

cm,`kzp,`k [tn] =
K∑
k=1

cm,`k x̄k,p[tn] =
K∑
k=1

cm,`k

Qp,k∑
q=1

ak,p,qx̄k[tn−τk,p,q ]

1For simplicity, we assume that the sets of mixing functions at all sensing nodes are the same.
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Estimation: joint recovery

� consider the cross-correlation between the i-th output of p1-th sensor and the j-th
output of p2-th sensor:

r
(p1,p2)
i,j [τν ] = E{yp1,i[tn]y∗p2,j

[tn−τν ]} =
K∑
k=1

wi,j,`k︸ ︷︷ ︸
ci,`k

c∗
j,`k

∑
q1,q2

ã
(p1,p2)
k,q1,q2

r̄kk[τν − τ̃ (p1,p2)
n,q1,q2 ]︸ ︷︷ ︸

r̄
(p1,p2)
k

[τν ]

� concatenate all cross-correlations r
(p1,p2)
i,j [τν ] together into one vector r

(p1,p2)
y [τν ]:

– r
(p1,p2)
z [τν ] is a K-sparse vector of length L that contains unknown relative autocorrelation

functions r̄
(p1,p2)

k [τν ] at the positions with indices `k

– support of r
(p1,p2)
z defines the central frequencies of the active sub-bands:

∀`k ∈ S ∃fk = `kfp

– W is a matrix comprised of elements wi,j,` such that its `-th column is

w` =
[
w1,1,`, . . . , w1,M,`︸ ︷︷ ︸

M

, w2,1,`, . . . , w2,M,`︸ ︷︷ ︸
M

, . . . , wM,1,`, . . . , wM,M,`︸ ︷︷ ︸
M

]T
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Estimation: joint recovery

r
(p1,p2)
y [τν ] = Wr

(p1,p2)
z [τν ]

� typical sparse recovery problem → can be solved for each τν independently

� we can apply the CTF block from (2)

Once the support S of r
(p1,p2)
z [τν ] is found we obtain

� the central frequencies of the active sub-bands

fk = `kfp, `k ∈ S

� the discrete baseband relative autocorrelation functions r̄
(p1,p2)
k [τν ] as(

r
(p1,p2)
z

)
S

[τν ] = W †
Sr

(p1,p2)
y [τν ],

where for some vector a and matrix A the notation aS and AS means taking the entries of a and
the columns of A indexed by S, respectively.

(2)M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: compressed sensing for analog signals,” IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 993–1009, 2009.

Introduction Sub-Nyquist receiver system Estimation methods Numerical Example Conclusions

8/ 14



Estimation: joint recovery

r
(p1,p2)
y [τν ] = Wr

(p1,p2)
z [τν ]

� typical sparse recovery problem → can be solved for each τν independently

� we can apply the CTF block from (2)

Once the support S of r
(p1,p2)
z [τν ] is found we obtain

� the central frequencies of the active sub-bands

fk = `kfp, `k ∈ S

� the discrete baseband relative autocorrelation functions r̄
(p1,p2)
k [τν ] as(

r
(p1,p2)
z

)
S

[τν ] = W †
Sr

(p1,p2)
y [τν ],

where for some vector a and matrix A the notation aS and AS means taking the entries of a and
the columns of A indexed by S, respectively.

(2)M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: compressed sensing for analog signals,” IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 993–1009, 2009.

Introduction Sub-Nyquist receiver system Estimation methods Numerical Example Conclusions

8/ 14



Estimation: two-step recovery

Alternatively, we can

� first estimate the support S and the corresponding low-rate sequences x̄k,p[tn] from the
outputs of individual sensors

� compute r̄
(p1,p2)
k [τν ] for each k independently

Estimation procedure:

� collect all M outputs yp,m[tn] of the p-th sensor together into one vector yp[tn]:

yp[tn] = [c1, · · · , cM ]T︸ ︷︷ ︸
C

zp[tn]

� find the support of zp[tn] from yp[tn]
– the support of zp[tn] is also S
– as before, we can find it either for each tn or by applying the CTF block

� estimate the individual low-rate sequences x̄k,p[tn] via (zp)S [tn] = C†Syp[tn]

� obtain baseband relative autocorrelations r̄
(p1,p2)
k [τν ]

r̄
(p1,p2)
k [τν ] = E{x̄k,p1

[tn]x̄k,p2
[tn − τν ]}
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Numerical example: simulation setup

Sensing scenario:

� frequency band of W = 3.9 GHz is split
into N = 135 communication channels

� W is occupied by K = 3 BPSK modulated
signals xk(t)

– bandwidth of B = 20 MHz

– carrier fk chosen uniformly at random
from {fc

n}
N
n=1

Sensors:

� sensors operate with M = 20 sampling
channels

� the sampling rate is fs = 28 MHz

� pm(t) are generated as pseudo-random
{±1} piece-wise constant functions

� total sampling rate at each sensor is
560 MHz, which is 14% of the Nyquist rate

Propagation parameters:

� number of multipath components is
Qk,p = 2

� time delays τk,p,q and amplitudes ak,p,q
are chosen uniformly at random from

[
NT
100 ,

9NT
100 ] and [0.6, 1]

– NT is the sensing time in samples

Performance metrics:

� support recover rate (SRR): |Ŝ ∩ S|/K
� mean square error (MSE) between the true

and the estimated relative autocorrelation
functions:

1

KNT

K∑
k=1

NT∑
ν=1

|r̄(p1,p2)
k

[τν ] − ˆ̄r
(p1,p2)
k

[τν ]|2

|r̄(p1,p2)
k

[τν ]|2
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Numerical example: performance vs SNR

NT = 500 samples
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� two-step recovery approach provides somewhat higher SRR rate

� joint estimation method provides slightly better accuracy in terms of r̄
(p1,p2)
k [τν ]

recovery
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Numerical example: performance vs sensing time

SNR = 0 dB

200 400 600 800 1,000
0.7
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� the same tendency

� two-step approach is less sensitive to sensing time duration for support recovery
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Conclusions

� we considered the task of relative autocorrelation estimation of multiple unknown
transmitters from the sub-Nyquist samples of wideband multiband signals obtained by a
network of spatially distributed sensing nodes.

� we showed that the central frequencies and the relative autocorrelation functions of the
individual transmissions can be estimated from the low-rate outputs of different sensors
and proposed two estimation methods

– joint recovery of the frequency support and the relative autocorrelation functions

– two-step approach

� both proposed methods allow for central frequency and relative autocorrelation
estimation from sub-Nyquist samples

– the joint recovery yields an improved accuracy of the latter while being more sensitive with
respect to the sensing time
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Thank you! Questions?
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