

Segmentation of Coronary Arteries from X-ray Angiography Sequences During Contrast Fluid Propagation by Image Registration

Mahdieh Khanmohammadi, Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen November 2017

Motivation

- Angina is chest pain caused by lack of oxygen to the heart
- Angina can be a symptom of possible stenosis (blockage of an artery)
- Angina can occure due to dysfunction in the microvascular system Syndrom X
- Different diagnoses require completely different treatment.

SYNDEX, The Syndrome X-ercise study

16.11.2017

Assessment of angina by X-ray angiography

- X-ray angiography is commonly used (invasive)
- In syndrom X patients no visible stenosis. But a slow blood velocity due to the malfunction in the microvascular system
- Would like to estimat the coronary flow reserve (CFR): ratio between resting and maximal possible blood flow in the coronary arteries – indication of Syndrom X.
- Need to estimate the blood velocity in the coronary vessels
- First need to segment the coronary vessels

SYNDEX data: 2D + time X-ray angiography

- Angiograms from patients (N=11) were obtained at the invasive cardiology department of Stavanger university hospital
- All procedures were performed using a GE coronary angio laboratory using lomerone 350 contrast dye.
- Videos are not synced with the heart beats.

Original photo from: http://www.nmcheartcare.ae/

Other approaches

75 76 CV18 CV18 CV0 Gen D372 V 84 Juliurity LT3BPU T13PU T13PU T13PU

Photo from: https://commons.wikimedia.org/wiki/File:Doppler_mitral_valve.gif

X-Ray 3D Angiography - Rotational Acquisition

Photo from: http://slideplayer.com/slide/7250680/

- Doppler echocardiography
- 3D rotational x-ray Angiography
- Ct- Angiography

Segmentation of X-ray angiography

- Most published work on segmentation of the coronary tree from X-ray angiography are 2D image segmentation after the dye is fully propagated. This gives no information on the blood velocity
- Segmenting in 2D+time is challenging since there are movement of the heart (uninteresting) in addition to the movement of the contrast dye (ineteresting)

Challenges

Heart motion (expansion and contraction during a hear beat)

Dye propagates through the vessels; Dye movement

Proposed Segmentation algorithm

Frangi Hessian Filter

2D+t Segmentation

Image Registration: Find a spatial transformation that matches two images.

Free-form registration in angiogram videos

• **Global:** Affine Registration (transformation with 12 degrees of freedom, describing the rotations, translations, scaling, and shearing of the heart is used.)

• Local: The local deformation of the arteries can vary significantly across patients and also from larger to smaller vessels. Thus, free-form deformation based on B-spline is chosen.

University of Stavanger

Registration results in our images

Before

After

Registration results in our images

 $F_{t5} \& F_{t6}$

F_{t9} & F_{t10} After

2D+t Segmentation

Results for 2D + time sequence

Original data

Segmentation with out registration

Better Segmentation with use of registration

Some results in random frames of angiogram from different patients

2D+t Segmentation

Evaluation of the obtained results

Patient	Pt1	Pt2	Pt3	Pt4	Pt5	Pt6	Pt7	Pt8	Pt9	Pt10	Pt11
Accuracy (%)	98	96	95	93	99	82	97	98	98	95	97
Specificity (%)	98	99	99	99	99	100	99	100	99	99	99
Sensitivity (%)	97	91	88	79	100	54	95	95	97	89	93
All Patients	Accuracy = 97%				Specificity = 99%			Sensitivity = 93%			

Conclusions and Future work

- Segmenting in 2D+time is challenging since there are movement of the heart (uninteresting) in addition to the movement of the contrast dye (interesting)
- The iterative registration-segmentation approach gives improved segmentation results that are useful over time, i.e. to assess the development of the contrast dye.
- Still improvement potential
- We are currently estimating blood velocity based on the development over time of the segmented coronary tree
- By correlating with truth measurements from Transthoracic Doppler Echocardiography we have currently encouranging results.

Thank you

Suggestions and Questions?