

Fast Coding Unit Selection Based on Local Texture Characteristics for HEVC Intra Frame

Milos Radosavljević, Georgios Georgakarakos, Sebastien Lafond and Dejan Vukobratović

1 the state

- HEVC Introduction
- HEVC Intra Coding
- HEVC Complexity and Performance Motivation for our research
- Local Binary Patterns LBP
- Proposed Solution
- Simulation Results
- Q/A

- Novel video compression standard
- High importance to the industrial and academic circles due to
 - New devices with wide range of different resolution
 - New services live sports, live music, other events, home theater, mobile streaming (for e.g. new Twitter video)
 - Increasing need for video transmission: most IP traffic is video
 - Increasing use of parallel processing architectures
- Goal was to achieves 2x higher compression compared to H.264/AVC and to improve throughput

HEVC Introduction

- Block based compression approach
 - Each frame is segmented into blocks
- Larger and flexible block size
- More intra prediction modes
- Larger DCT transform sizes
- High throughput CABAC
- New Advanced Motion Vector Precision with 1/4 pixel accuracy
- Etc.

HEVC Intra Coding – block structure

- Support more flexible block size quadtree structure
- Basic processing unit is Coding Unit CU
- CU size ranges from 8x8 up to 64x64 pixels
- Each CU can incorporate within its structure PUs and TUs with different sizes
 - from 4x4 to 64x64 for PU
 - from 4x4 to 32x32 for TU

HEVC Intra Coding – block structure

- Quadtree structure example
- Green CU (64x64-8x8)
- Blue PU (64x64-4x4)
 - For Intra: 2Nx2N mode or NxN mode
- Red TU(32x32-4x4)
 - DCT/DST transform

HEVC Intra Coding – prediction modes

- Number of intra prediction modes grows up to 35, compared with 9 in H.264/AVC
- HEVC uses DC, Planar, and 33 angular modes

HEVC Complexity/Motivation for our work

- Decisions are based on cost minimization
 - $-J = D + \lambda * R$
 - Rate-Distortion Optimization based on Lagrangian method
- In order to get D and R in brute force approach
 - Full forward (encoding) process has to be performed
 - Full inverse (decoding) process has to be performed
- Prediction, DCT, quantization, entropy coding, get R, entropy decoding, inverse quantization, IDCT, get D

HEVC Complexity/Motivation for our work

- To decide an optimal quadtree structure and prediction mode
 - Go trough all possible outcomes in terms of different block sizes and different prediction modes
 - Minimize the cost J
- Time consuming process
 - Impossible to do it in real time
- HEVC reference software has implemented fast approaches
 - Still space (and need) for more speed-up and simplification
 - For the price of some performance degradation

HEVC Complexity/Motivation for our work

- Correlation between the CU size and the texture within the CU
- RDO tend to use smaller CUs
 - Rich texture regions
 - On the edge between objects
 - Between objects and background
 - Transition between different textures
- Use texture descriptors to decide
 - If CU contains different textures
 - Flat regions
 - Texture rich/complex regions

- LBP as texture descriptor
 - Histograms of LBPs
- Calculated on pixel level
 - assigning to each pixel a corresponding LBP value (LBP code)

bo Akademi University Local Binary Patterns - LBP

Fast implementation using only shifts and logical operations

$$\begin{split} LBP_{code} &|= (sp(i-1,j-1) > sp(i,j)) << 0; \\ LBP_{code} &|= (sp(i-1,j) > sp(i,j)) << 1; \\ LBP_{code} &|= (sp(i-1,j+1) > sp(i,j)) << 2; \\ LBP_{code} &|= (sp(i,j+1) > sp(i,j)) << 3; \\ LBP_{code} &|= (sp(i+1,j+1) > sp(i,j)) << 3; \\ LBP_{code} &|= (sp(i+1,j-1) > sp(i,j)) << 4; \\ LBP_{code} &|= (sp(i+1,j-1) > sp(i,j)) << 5; \\ LBP_{code} &|= (sp(i+1,j-1) > sp(i,j)) << 6; \\ LBP_{code} &|= (sp(i,j-1) > sp(i,j)) << 7; \end{split}$$

- Uniform patterns
 - u=2 in our research
 - -2 transitions from 0 to 1 and vice versa
- Group uniform patterns into histogram
 - Each uniform allocated to separate bin
 - All non-uniform voted to only one bin
- For $u=2 \Rightarrow 58$ uniform codes
 - 58 + 1 dimensional histogram

No.	value		No.	value		No.	value		
1	0	00000000	21	62	00111110	41	207	11001111	
2	1	00000001	22	63	00111111	42	223	11011111	
3	2	00000010	23	64	01000000	43	224	11100000	
4	3	00000011	24	96	01100000	44	225	11100001	
5	4	00000100	25	112	01110000	45	227	11100011	
6	6	00000110	26	120	01111000	46	231	11100111	
7	7	00000111	27	124	01111100	47	239	11101111	
8	8	00001000	28	126	01111110	48	240	11110000	
9	12	00001100	29	127	01111111	49	241	11110001	
10	14	00001110	30	128	1000000	50	243	11110011	
11	15	00001111	31	129	1000001	51	247	11110111	
12	16	00010000	32	131	10000011	52	248	11111000	
13	24	00011000	33	135	10000111	53	249	11111001	
14	28	00011100	34	143	10001111	54	251	11111011	
15	30	00011110	35	159	10011111	55	252	11111100	
16	31	00011111	36	191	10111111	56	253	11111101	
17	32	00100000	37	192	11000000	57	254	11111110	
18	48	00110000	38	193	11000001	58	255	11111111	
19	56	00111000	39	195	11000011	50			
20	60	00111100	40	199	11000111	22			

0.06

0.05

0.04

0.03

0.02

0.01

0.00

*skit-image database

Percentage

- Based on the LBP histogram matching
- Occurrence histogram H^d is formed on the CU level
- Sub-histograms are calculated for sub-CUs on the higher depth H_i^{d+1} H_0^2
- To make decisions use
 S(H^d; H_i^{d+1}) similarity measure

- $-S(H^d; H_i^{d+1})$ similarity measure function
- Sufficiently high similarity $(\forall_i) S(H^d; H_i^{d+1})$
 - CU consists only of one texture region
- Otherwise if $(\exists_i) S(H^d; H_i^{d+1})$ is low
 - High possibility that the CU is composed of different textures
 - More likely that CU is going to be split

- CU split decision is given by
 - $-\operatorname{S}(H^d;H^{d+1}_i) \leq thr(Qp)$
 - For at least one i
- If $S(H^d; H_i^{d+1}) \le thr(Qp)$ is not satisfied
 - 4 different approaches based on performance-complexity tradeoff

- all further calculation is omitted and current CU depth is

Criterion I

selected

- one additional depth with RDO is performed
- Criterion3
 - two additional depths are calculated with RDO
- Criterion4
 - all additional depths are calculated with RDO

BD-PSNR AND TIME REDUCTION FOR THE PROPOSED ALGORITHM

	Criterion1		Criterion2		Criterion3		Criterion4	
Sequence	BD-PSNR [dB]	ΔΤ [%]	BD-PSNR [dB]	ΔΤ [%]	BD-PSNR [dB]	ΔΤ [%]	BD-PSNR [dB]	ΔΤ [%]
PeopleOnStreet(ClassA)	-0.9826	76.6890	-0.5689	62.6812	-0.1561	21.9119	-0.0163	4.0559
Cactus(ClassB)	-0.6277	80.2024	-0.3486	57.2062	-0.1249	25.1177	-0.0062	3.2532
RaceHorses1(ClassC)	-0.9997	81.4038	-0.5296	58.8562	-0.1348	19.0552	-0.0068	6.9282
BlowingBubbles(ClassD)	-1.0342	80.7887	-0.4416	45.0893	-0.0955	14.3006	-0.0011	6.9940
Johnny(ClassE)	-1.0230	79.0388	-0.5330	58.8651	-0.1435	24.7559	-0.0502	2.6000
Lena_Image	-0.5871	83.0630	-0.2895	58.2412	-0.0682	25.8615	-0.0104	8.5753
Average	-0.8757	80.1976	-0.4519	56.8232	-0.1205	21.8338	-0.0152	5.4011

Similarity measure-histogram correlation

32 0.59

0.79

23

0.68

0.50

41

0.23

50

Threshold values

Other similarity metrics can be in use but it requires thr recalculation

