

Image Super-Resolution Using Nonlocally Centralized Sparse Representation and Fields of Experts Priors

Xiu Zhang, Wei Zhou and Zhemin Duan

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China

Introduction: The image Super-Resolution (SR) method essentially is to reconstruct a high-resolution (HR) image from one or more degraded (e.g., noisy, blurred or down-sampled) images. Due to the degradation of the observed images, the concept of sparse coding noise (SCN) was used to recover the original image. Since the image is noisy, so it is necessary to select an appropriate prior model to reconstruct the HR image. In this paper, we proposed a novel image SR reconstruction method, which introduced the Fields of Experts (FoE) priors model into the framework of nonlocally centralized sparse representation (NCSR), then learned the prior information of the whole image. The experimental results show that the proposed approach using FoE prior model is not only reduces the impact of noise, but also improves the quality of the reconstructed image.

Nonlocally Centralized Sparse Representation:

The concept of SCN^[1] can be formulated as follow

$$v_{\alpha} = \alpha_y - \alpha_x$$

In order to calculate v_a , we could have the reasonably estimation of a_x , denoted by β , then the a_y - β becomes a good estimation of v_a . By suppressing the SCN v_a to improve the accuracy of the a_y , there is the following centralized sparse representation (CSR) model

$$\alpha_{y} = \underset{\alpha}{\operatorname{argmin}} \left\{ \left\| y - HD \circ \alpha \right\|_{2}^{2} + \lambda \sum_{i} \left\| \alpha_{i} \right\|_{1} + \gamma \sum_{i} \left\| \alpha_{i} - \beta_{i} \right\|_{p} \right\}$$
(2)

where β_i is some reasonably estimation of α_i , γ is the regularization parameter and *p* can be lor 2.

In (2), the local sparsity term $\|\alpha_i\|_1$ is used to ensure that only a small number of atoms are selected from the over-complete dictionary *D* to represent the input image patch. Nevertheless, as long as the given patch is a very sparse representation, the coding coefficients of image patches over the other subdictionaries to be 0. Thus we can remove the local sparsity regularization term $\|\alpha_i\|_1$, the sparse coding model in (2) can be rewritten as

$$\alpha_{y} = \underset{\alpha}{\operatorname{argmin}} \left\{ \left\| y - HD \circ \alpha \right\|_{2}^{2} + \gamma \sum_{i} \left\| \alpha_{i} - \beta_{i} \right\|_{p} \right\}$$
(3)

where p=1, and the estimate β_i is obtained by using the nonlocal redundancy of natural images, so the regularization term $||\alpha_r \beta_i||_p$ will becomes a nonlocally centralized sparsity term. Hence, the (3) was called as nonlocally centralized sparse representation (NCSR) model.

Fields of Experts Priors:

The Fields of Experts (FoE)^[2,3] model using the natural image statistics prior to replace Gauss potential function, and the spatial contextual structure for representing the image information will be more widely.

Here we first introduce the Product of Experts (PoE). We found that the responses of linear filters applied to natural images typically exhibit highly kurtotic marginal distributions that resemble a Student-t distribution by the statistical characteristics observation. So Welling et al. proposed the use of Student-t experts. The Product of *t*-distribution (PoT) model can be formulated as

$$p_{PoE}(x) = \frac{1}{Z(\Theta)} \prod_{i=1}^{N} \phi_i (J_i^T x; \alpha_i), \Theta = \{\theta_1, \cdots, \theta_N\}$$
(4)

where $\theta_i = \{a_n, J_i\}, Ji \in R_n$ are filters. $Z(\Theta)$ is the partition function. The potential function of PoE can be obtained as follow

$$E_{PoE}(\mathbf{x}, \Theta) = -\sum_{i=1}^{n} \log \phi_i \left(J_i^T \mathbf{x}; \alpha_i \right)$$
(5)
density of whole $\sum_{i=1}^{n-1} \log \phi_i \left(\mathbf{x}; \Theta_i \right)$

So, the probability density of whole image in the FoE model can be formulated as

$$p_{FoE}\left(x\right) = \frac{1}{Z\left(\Theta\right)} \exp\left(-E_{FoE}\left(x,\Theta\right)\right) \tag{6}$$

where

(1)

$$E_{FoE}\left(x,\Theta\right) = -\sum_{k}\sum_{i=1}^{N}\log\phi_{i}\left(J_{i}^{T}x_{(k)};\alpha_{i}\right)$$
(7)

So, the (6) can be equivalent to

$$p_{F_{OE}}(x) = \frac{1}{Z(\Theta)} \prod_{k} \prod_{i=1}^{N} \phi_i \left(J_i^T x_{(k)}; \alpha_i \right)$$
(8)

The important difference with PoE model is that the FoE model takes the product over all neighborhoods k, and establishes a global prior model.

Super-Resolution Reconstruction:

Despite the image super-resolution algorithm based on nonlocally centralized sparse representation have good quality of reconstructed images and eliminates the image artifact, this method not have the appropriate prior model to reduce the noise of the reconstructed images. So we introduced a prior model into this method to improve the effect of image reconstruction in this paper. Hence we proposed the following sparse representation model

$$\alpha_{y} = \underset{\alpha}{\operatorname{argmin}} \left\{ \left\| y - HD \circ \alpha \right\|_{2}^{2} + \gamma \sum_{i} \left\| \alpha_{i} - \beta_{i} \right\|_{p} + \tau P(\alpha) \right\}$$
(9)

where τ is regularization parameter, which can ensure the global optimal solution and the convergence of this algorithm. The $P(\alpha)$ is a prior model.

In the paper, we applied the FoE prior model to the SR reconstruction algorithm based on image sparse, so the (9) can be rewritten as

$$\alpha_{y} = \underset{\alpha}{\operatorname{argmin}} \left\{ \left\| y - HD \circ \alpha \right\|_{2}^{2} + \gamma \sum_{i} \left\| \alpha_{i} - \beta_{i} \right\|_{p} + \tau p_{FoE} \left(\alpha_{y}^{(j-1)} \right) \right\}$$
(10)

In this method, the iteration of prior model and the iterative computation of image reconstruction are performed simultaneously. When the reconstructed image is updated to the optimal solution of α_y can be calculated with (10), and then we can reconstruct original image with (11).

 $\hat{x} = D \circ \alpha_{v}$

Experimental Results:

In order to prove the efficiency of the proposed approach, we need to verify the effect of image denoising and quality of image SR reconstruction.

The Table I lists the PSNR results of image denoising, while the examples are shown in Fig.1.

The PSNR results of different reconstructed images using different methods as show in Table II. The reconstructed images with different algorithms are show in Fig.2.

Fig.1 Denoising results of *Barbara* image. From left to right: original image, noisy image $(\sigma=50)$, denoised image by NSCR and the proposed method

TABLE I. PSNR(dB) RESULTS OF DENOISE IMAGES

σ	5		10		15		20		50		100	
Lena	38.7394	38.7423	35.8466	36.0123	34.1176	34.1345	32.9494	33.1034	28.9028	28.9716	25.7143	25.9158
Monarch	38.4932	38.5014	34.5123	34.5398	32.2562	32.4856	30.6229	30.9527	25.7614	25.9215	22.1168	22.2921
barbara	38.3746	38.3901	35.0032	35.1962	33.0639	33.2147	31.7771	31.8045	26.9898	27.0267	23.1811	23.2695
boat	37.3357	37.3316	33.9148	33.7082	32.0809	32.2413	30.7853	30.7239	26.6651	26.7659	23.6841	23.5694
cameraman	38.2559	38.2562	34.1859	34.2572	32.0143	32.1509	30.4686	30.5932	26.1541	26.0283	22.9315	23.0281
couple	37.4973	37.5109	34.0022	34.1385	31.9985	31.7962	30.6025	30.5364	26.1861	26.2097	23.1530	23.0169
fingerprint	36.8067	36.8126	32.6830	32.4213	30.4468	30.4351	28.9631	29.0163	24.4819	24.3681	21.3949	21.5284
hill	37.1768	37.1624	33.6920	33.5109	31.8790	31.9524	30.6504	30.7981	26.9871	27.1349	24.3595	24.4680
house	39.9439	39.9876	36.7953	36.8159	35.0480	35.1562	33.8744	33.8426	29.6172	29.6983	25.5625	25.4219
man	37.8474	37.8097	34.0470	34.1845	31.9809	32.0659	30.5886	30.6549	26.6659	26.5383	24.0162	24.1325
peppers	38.1143	38.1425	34.6799	34.5084	32.6647	32.5632	31.1851	31.2463	26.5308	26.8026	22.8426	22.9127
straw	35.8331	35.8493	31.4547	31.4958	29.0899	29.2567	27.4637	27.5747	22.4880	22.5219	19.4044	19.3159
Average	37.8682	37.8747	34.2347	34.2324	32.2201	32.2877	30.8276	30.9039	26.4525	26.4990	23.1967	23.2393

a) LR image b) HR image c) ASDSAR method d) CSR method e) NCSR method f) The proposed

Fig.2 Reconstructed images of Raccoon by different methods

TABLE II. PSNR(dB) RESULTS OF RECONSTRUCTED IMAGES

Images	Butterfly	flower	Girl	Parthenon	Parrot	Raccoon	Bike	Hat	Plants	Average
ASDSAR	26.0113	27.6647	31.7700	26.0807	28.7198	27.9919	23.5212	29.5647	31.0595	28.0426
CSR	26.8411	28.0753	32.0383	26.3780	29.4952	28.0198	23.7757	29.9569	31.7779	28.4842
NCSR	26.8195	28.0886	32.0321	26.3690	29.5016	28.0217	23.7812	29.9504	31.8005	28.4850
proposed	26.9653	28.1384	32.1349	26.4576	29.5531	28.1591	23.8437	30.0412	31.8513	28.5716

References:

(11)

[1] Dong W, Zhang L, Shi G, et al. "Nonlocally Centralized Sparse Representation for Image Restoration," IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,1620-1630,2011.

[2] Roth S, Black M J. Fields of Experts: "A Framework for Learning Image Priors," IEEE Computer Society Conference on Computer Vision and Pattern Recognition. DBLP,860-867,2008.

[3] Roth S, Black M J. "Fields of Experts," International Journal of Computer Vision, 205-229, 2009, 82(2).

ontréal, Cana