

¹School of Physics and Electronics, Shandong Normal University, Jinan, China, ²Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA

Abstract

- In an optical imaging system, because the existence of the point spread function (PSF), the image cannot exactly represent the object.
- Deconvolution is an effective method to recover the object from the blurred image.
- But the detector only measures the intensity of light, not the phase. So the information used in image deconvolution is incomplete.
- Phase retrieval provides an effective method to recover the phase information from intensity measurements.
- With the complete field information, we can reconstruct the object more accurately.

Phase Retrieval Based Deconvolution Algorithm in Optical Systems Shaohua Qin¹, Sebastian Berisha², David Mayerich² and Zhu Han²

Algorithm The image formation model in an optical system can be expressed using the following linear formulation: $i(x, y, z) = o(x, y, z) * e_f(x, y, z),$ i(x, y, z) is the complex image at the detector, o(x, y, z) is the object, $e_f(x, y, z)$ is the point spread function (PSF) of the imaging system. $e_f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 2\pi E_0 \sum i^l j_l(kr) P_l \cos(\theta) c_l,$ In the Fourier domain, this model is expressed as $I(u, v, w) = O(u, v, w) \odot E_f(u, v, w),$ The detector in an optical system only measures intensity, the measurements is $|F^{-1}(I(u, v, w))|^2$, The model of phase retrieval in our system is $|w\rangle|^2, t = 1, 2, ..., m,$ We use the Wirtinger Flow to recover the phase 10⁻⁵ Init 10⁻¹⁰ $(z)a_ta_t^*,$ Minimize the lost function $f(I(u, v, w)) := \frac{1}{2m} \sum_{i=1}^{m} \left[d_t(x, y, z) - |a_t^*I(u, v, w)|^2 \right]^2$, The object can be recovered with deconvolution $E_f(u, v, w),$ v,w)),

$$d(x, y, z) = |i(x, y, z)|^2 =$$

$$d_t(x, y, z) = |\langle \mathbf{a}_t, I(u, v, u) \rangle|_{\mathbf{a}_t}$$

tialization
$$I(u, v, w)_0 = \frac{1}{m} \sum_{t=1}^m d_t(x, y, w)_0$$

$$O(u, v, w) = I(u, v, w) \oslash E$$

 $o(x, y, z) = F^{-1}(O(u, z))$

2017, Montreal, Canada

Fig. 3: error of the phase retrieval algorithm

Simulation Results

(b) measured optical image (c) reconstructed object

Fig. 2: Performance of the proposed algorithm

Fig. 4: amplitude comparison of the original and reconstructed object

