UMASS

Circle Detection by Arc-support Line Segments

Changsheng Lu ${ }^{1}$, Siyu Xia¹, Wangming Huang ${ }^{2}$, Ming Shao ${ }^{3}$, Yun Fu ${ }^{4}$
${ }^{1}$ Southeast University, Nanjing 210096, China
2 Joint Stars Technology CO., LTD, Nanjing 211100, China ${ }^{3}$ University of Massachusetts, Dartmouth, MA 02747, USA
${ }^{4}$ Northeastern University, Boston, MA 02115, USA
Sep. 18 ${ }^{\text {th, }} 2017$

Contents

 UMASS> Background introduction
> Arc-support line segment extraction
> Paired line segments analysis
> Circle candidate generation and validation
> Experimental results
> Summary

Background introduction

> Main Applications

Background introduction

Current methods

1) Hough Transform (HT) based methods
$>$ Circle Hough Transform (CHT)
$>$ Randomized Hough Transform (RHT)
2) Random Sample Consensus (RANSAC) based methods
> Random Circle Detection (RCD)
3) Line Segments Approximating based methods
$>$ Truc Le el. al [1] method
[1] Truc Le and Ye Duan, Circle detection on images by line segment and circle completeness, IEEE ICIP, 2016, pp. 3648-3652.

Background introduction

> Challenges

$>$ The existence of substantial noises, edge blurring and corruption in industrial environment
$>$ Brightness and shadow
$>$ Object occlusion
$>$ The circles with different structures. E.g. concentric, overlapping and discontinuous.
$>$ The requirements of high location accuracy and robustness in complex backgrounds

Background introduction

> Goal
> Propose an effective, high-accuracy and robust circle detector
> Achieve very low error recognition rate which guarantees the detection system' s stability and security.
>Be capable to deal with the disturbances of complex environment

Contents

 UMASS
> Background introduction of circle detection

$>$ Arc-support line segment extraction
> Paired line segments analysis
> Circle candidate generation and validation
> Experimental results
> Summary

Arc-support line segment extraction

> Gradient angle

> Level-line angle
Obtained by rotating gradient angle 90° clockwise
> Line segment types:

1) Line segment that derives from high straight edge 2) Arc-support line segment

(a)

(b)

(c)

Arc-support line segment extraction

Arc-support line segment extraction

$>$ Conditions

1) $\angle \overrightarrow{A C}, \angle \overrightarrow{A B}, \angle \overrightarrow{B C}$ should change in either the clockwise or anticlockwise.
2) Angle intervals of $\{\angle \overrightarrow{A C}, \angle \overrightarrow{A B}\}$ and $\{\angle \overrightarrow{A B}, \angle \overrightarrow{B C}\}$ should be larger than $T_{a i}$
> Properties of arc-support LS
3) Polarity is positive if overall gradient direction is same as arc-support direction. Otherwise it is negative.
4) All the arc-support LSs derive from curve edge

Arc-support line segment extraction

> Results

(a)

(b)

(c)

Results of line segment extraction. (a) origin image. (b) 146 LSs are extracted by LSD [2]. (c) 92 arcsupport LSs are extracted by proposed method
[2] Grompone v G R, Jakubowicz J, Morel J M, et al. LSD: a fast line segment detector with a false detection control.[J]. IEEE TPAMI, 2010, 32(4):722-732.

Contents

> Background introduction of circle detection

> Arc-support line segment extraction
> Paired line segments analysis
> Circle candidates generation and validation
> Experimental results
> Summary

Paired line segments analysis

> Polarity analysis
In general, especially in industry, the extracted arcsupport LSs of an object share the same polarity
$>$ Region restriction

$$
\left\{\begin{array}{l}
\overrightarrow{A C} \cdot \overrightarrow{A R C_{L 1}}>\rho_{d} \\
\overrightarrow{A D} \cdot \overrightarrow{A R C_{L 1}}>\rho_{d} \\
\overrightarrow{C A} \cdot \overrightarrow{A R C_{L 2}}>\rho_{d} \\
\overrightarrow{C B} \cdot \overrightarrow{A R C_{L 2}}>\rho_{d}
\end{array}\right.
$$

The overlapped
valid region of L1, ${ }^{\mathrm{L} 2}$

region of L1

Paired line segments analysis

> Radii \& inliers criteria

1) The radii (R_{1} and R_{2}) should be within a radial distance tolerance $\epsilon_{r d}$
2) The percentage of valid inliers should be larger than γ. (The inliers that make up L_{1} and L_{2} are valid if they satisfy distance tolerance $\epsilon_{i d}$ and normal tolerance α)

The set of valid pair
Initial circle set

Contents

> Background introduction of circle detection

> Arc-support line segment extraction
> Paired line segments analysis
> Circle candidate generation and validation
> Experimental results
$>$ Summary

Circle candidate generation and validation

> Circle candidate generation

1) Due to there existing many duplicates, we apply the nonmaximum suppression based on mean shift
2) First step, cluster the circle centers; Second step, cluster the radii. Therefore, each mode of circle center and radius is the circle candidate

$$
\mathbf{m}(\mathbf{x})=\frac{\sum_{i=1}^{N} w\left(\mathbf{x}_{i}\right) \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|\right)}{\sum_{i=1}^{N} w\left(\mathbf{x}_{i}\right) g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i} \|}{h}\right\|\right)}-\mathbf{x}
$$

Initial circle set
Circle candidate set

Circle candidate generation and validation

> Circle candidate validation

1) We expect that the number of valid inliers of a circle should be larger than $2 \pi R T_{n i}$, where $T_{n i}$ is ratio threshold
2) The angle coverage of connected component of valid inliers should be at least $T_{a c}$ degrees

Circle candidate generation and validation

> Twice circle fitting

If the circle after first fitting generates the true circle, its new valid inliers will be more sufficient than the old. Therefore, this observation motivates us for a twice circle fitting to improve the accuracy

Contents

> Background introduction of circle detection
> Arc-support line segment extraction
> Paired line segments analysis
> Circle candidate generation and validation
> Experimental results
> Summary

Experimental results

Datasets

1) Natural image dataset
2) PCB image dataset

Evaluation metrics

1) Precision $=T P s /(T P s+F P s)$
2) Recall $=\mathrm{TPs} /(\mathrm{TPs}+\mathrm{FNs})$

Method type	Precision	Recall	Average time
Our method	$\mathbf{9 7 . 2 6 \%}$	$\mathbf{8 1 . 4 5 \%}$	$\mathbf{2 8 4 . 6} \mathbf{~ m s}$
The method in [1]	86.40%	82.60%	4467.8 ms
CHT	26.36%	61.95%	2457.7 ms
RCD	31.06%	34.99%	190.2 ms

Method type	Precision	Recall	Average time
Our method	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{9 4 . 2 4 \%}$	$\mathbf{1 5 5 . 3} \mathbf{~ m s}$
The method in $[1]$	89.06%	97.12%	1160 ms
CHT	35.53%	55.56%	1106.9 ms
RCD	52.27%	18.93%	118.3 ms

The results in natural image dataset

The results in PCB image dataset

Experimental results

Experimental results

Experimental results

> Examples

> <<<Code Link
https://github.com/AlanLuSun/Circle-detection

Contents

> Background introduction of circle detection
> Arc-support line segment extraction
> Paired line segments analysis
> Circle candidate generation and validation
> Experimental results
> Summary

Summary

$>$ We propose the concept of arc-support line segment, and point out corresponding property of polarity
$>$ We use the polarity analysis, region restriction and effective criteria to reduce the arc-support line segments pairing time, which improves the circle detection efficiency.
> Validate the circle candidates from the number of inliers and the circle completeness, which increases the algorithm' s robustness
> Improve the circle location accuracy by twice circle fitting

Thanks for listening

