

Circle Detection by Arc-support Line Segments

Changsheng Lu¹, Siyu Xia¹, Wangming Huang², Ming Shao³, Yun Fu⁴

¹ Southeast University, Nanjing 210096, China
 ² Joint Stars Technology CO., LTD, Nanjing 211100, China
 ³ University of Massachusetts, Dartmouth, MA 02747, USA
 ⁴ Northeastern University, Boston, MA 02115, USA

Sep. 18th, 2017

- Background introduction
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidate generation and validation
- > Experimental results
- Summary

Main Applications

Shape recognition
 Object localization and measurement
 Image segmentation
 Edge contour modelling

Current methods

1) Hough Transform (HT) based methods

- Circle Hough Transform (CHT)
- Randomized Hough Transform (RHT)
- 2) Random Sample Consensus (RANSAC) based methods
 ➢ Random Circle Detection (RCD)
- 3) Line Segments Approximating based methods
 - > Truc Le el. al [1] method

[1] Truc Le and Ye Duan, Circle detection on images by line segment and circle completeness, *IEEE ICIP*, 2016, pp. 3648–3652.

Challenges

- The existence of substantial noises, edge blurring and corruption in industrial environment
- Brightness and shadow
- Object occlusion
- The circles with different structures. E.g. concentric, overlapping and discontinuous.
- The requirements of high location accuracy and robustness in complex backgrounds

> Goal

- Propose an effective, high-accuracy and robust circle detector
- Achieve very low error recognition rate which guarantees the detection system's stability and security.
- Be capable to deal with the disturbances of complex environment

- Background introduction of circle detection
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidate generation and validation
- > Experimental results
- Summary

- Gradient angle
- Level-line angle Obtained by rotating gradient angle 90° clockwise
- Line segment types:
 1) Line segment that derives from high straight edge
 2) Arc-support line segment

as $\angle AB$ and the directions of two subregions as $\angle \overrightarrow{AC}$, $\angle \overrightarrow{CB}$

Conditions

- 1) $\angle \overrightarrow{AC}$, $\angle \overrightarrow{AB}$, $\angle \overrightarrow{BC}$ should change in either the clockwise or anticlockwise.
- 2) Angle intervals of $\{\angle \overrightarrow{AC}, \angle \overrightarrow{AB}\}$ and $\{\angle \overrightarrow{AB}, \angle \overrightarrow{BC}\}$ should be larger than T_{ai}
- Properties of arc-support LS
 - 1) Polarity is positive if overall gradient direction is same as arc-support direction. Otherwise it is negative.
 - 2) All the arc-support LSs derive from curve edge

Results

Results of line segment extraction. (a) origin image. (b) 146 LSs are extracted by LSD [2]. (c) 92 arcsupport LSs are extracted by proposed method

[2] Grompone v G R, Jakubowicz J, Morel J M, et al. LSD: a fast line segment detector with a false detection control.[J]. *IEEE TPAMI*, 2010, 32(4):722–732.

- Background introduction of circle detection
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidates generation and validation
- > Experimental results
- Summary

Paired line segments analysis

Polarity analysis In general, especially in industry, the extracted arcsupport LSs of an object share the same polarity

Radii & inliers criteria

- 1) The radii (R_1 and R_2) should be within a radial distance tolerance \in_{rd}
- 2) The percentage of valid inliers should be larger than γ . (The inliers that make up L_1 and L_2 are valid if they satisfy distance tolerance \in_{id} and normal tolerance α)

The set of valid pair
Initial circle set

Contents

- Background introduction of circle detection
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidate generation and validation
- > Experimental results
- Summary

Circle candidate generation

1) Due to there existing many duplicates, we apply the nonmaximum suppression based on mean shift

 First step, cluster the circle centers; Second step, cluster the radii. Therefore, each mode of circle center and radius is the circle candidate

Initial circle set
Circle candidate set

Circle candidate generation and validation

- Circle candidate validation
 - 1) We expect that the number of valid inliers of a circle should be larger than $2\pi RT_{ni}$, where T_{ni} is ratio threshold
 - 2) The angle coverage of connected component of valid inliers should be at least T_{ac} degrees

Twice circle fitting

If the circle after first fitting generates the true circle, its new valid inliers will be more sufficient than the old. Therefore, this observation motivates us for a twice circle fitting to improve the accuracy

Contents

- Background introduction of circle detection
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidate generation and validation
- > Experimental results
- Summary

- Datasets
 - 1) Natural image dataset
 - 2) PCB image dataset
- Evaluation metrics
 - 1) Precision = TPs/(TPs + FPs)
 - 2) Recall = TPs/(TPs + FNs)

Method type	Precision	Recall	Average time
Our method	97.26%	81.45%	284.6 ms
The method in [1]	86.40%	82.60%	4467.8 ms
СНТ	26.36%	61.95%	2457.7 ms
RCD	31.06%	34.99%	190.2 ms

The results in natural image dataset

Method type	Precision	Recall	Average time
Our method	100.00%	94.24%	155.3 ms
The method in [1]	89.06%	97.12%	1160 ms
СНТ	35.53%	55.56%	1106.9 ms
RCD	52.27%	18.93%	118.3 ms

The results in PCB image dataset

Examples

<<<Code Link

https://github.com/AlanLuSun/Circle-detection

Contents

- Background introduction of circle detection
- Arc-support line segment extraction
- Paired line segments analysis
- Circle candidate generation and validation
- > Experimental results
- Summary

Summary

- We propose the concept of arc-support line segment, and point out corresponding property of polarity
- We use the polarity analysis, region restriction and effective criteria to reduce the arc-support line segments pairing time, which improves the circle detection efficiency.
- Validate the circle candidates from the number of inliers and the circle completeness, which increases the algorithm's robustness
- Improve the circle location accuracy by twice circle fitting

Thanks for listening

