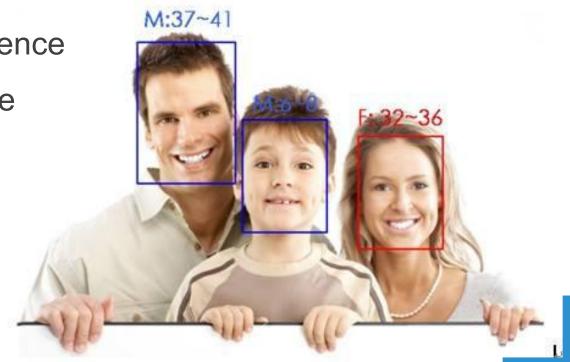


Age Group Classification in the Wild with Deep RoR Architecture

Ke Zhang

North China Electric Power University

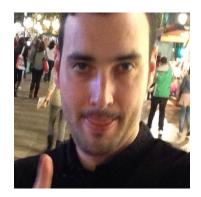

zhangkeit@ncepu.cn

Outline

- 01 Introduction
- 02 Methodology
- 03 Experiments
- 04 Conclusion

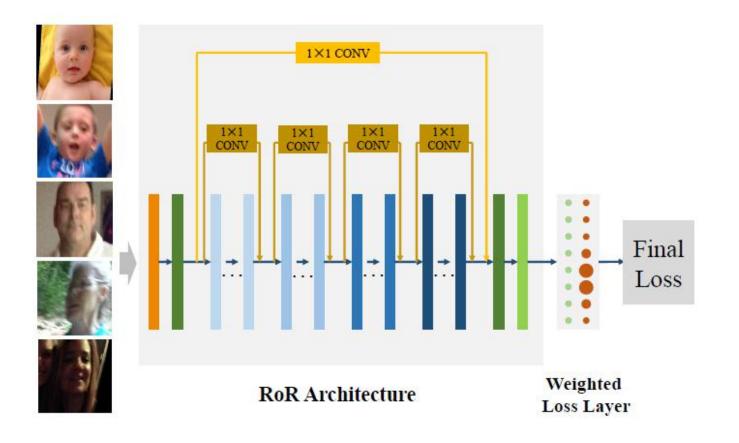
Introduction

- access control
- human-computer interaction
- law enforcement
- marketing intelligence
- visual surveillance

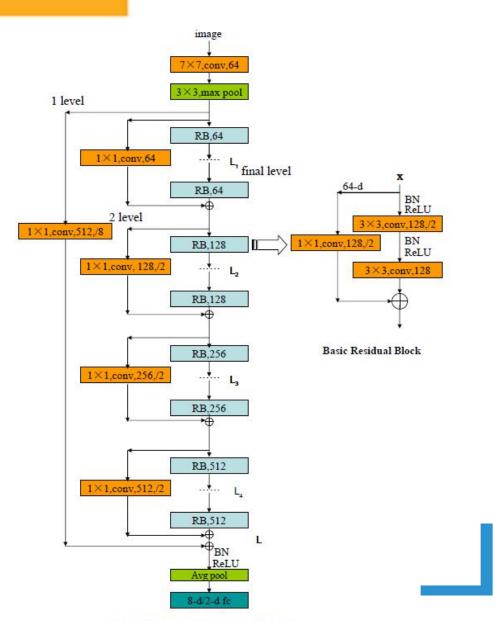


Introduction

- Adience dataset
- large variations in appearance, noise, pose and lighting


Introduction

 All of previous methods were only proven effective on constrained benchmarks, and could not achieve respectable results on the benchmarks in the wild.


contribution:

- construct RoR for age group classification
- pre-trained CNN by gender
- weighted loss layer
- achieve the new state-of-the-art results on Adience dataset

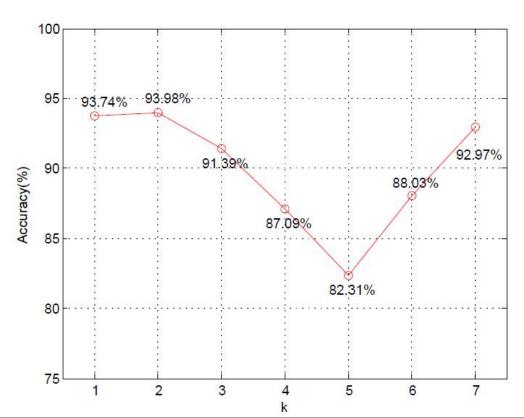
Overview of RoR architecture for age classification

RoR architecture
for age classification

Pre-RoR with Basic Blocks

Pretraining with gender:

 We train CNN by gender initially, then replace the gender prediction layer with age prediction layer, and fine-tune the whole CNN structure at last.


Training with weighted loss layer:

• Interrelated age groups are more difficult to distinguish.

Human aging processes show variations in different

age ranges.

Name	Loss Weight Distribution	
LW0	(1,1,1,1,1,1,1)	
LW1	(1,1,1,0.9,0.8,0.8, 0.9,1)	
LW2	(1,1,1,1.1,1.2,1.2,1.1,1)	
LW3	(1,1,1,1.3,1.5,1.5,1.3,1)	

Experiments

Age group classification by Pre-RoR:

Method	Exact Acc(%)	1-off(%)
4c2f-CNN	52.62 ± 4.37	88.61 ± 2.27
VGG-16	54.64 ± 4.76	54.64±4.76
Pre-ResNets-34	60.15 ± 3.99	90.90 ± 1.67
Pre-RoR-34+SD	62.35 ± 4.69	93.55 ± 1.90
Pre-RoR-58+SD	62.50 ± 4.33	93.63 ± 1.90
Pre-RoR-82+SD	62.14±4.10	93.68±1.22

Experiments

Comparisons with state-of-the-art results:

Method	Exact Acc(%)	1-off(%)
SVM-dropout	45.1 ± 2.6	79.5 ± 1.4
R-SAAFc2	53.5	87.9
DEX w/o IMDB-WIKI pretrain	55.6±6.1	89.7±1.8
DEX w/ IMDB-WIKI pretrain	64.0 ± 4.2	96.60 ± 0.90
4c2f-CNN	52.62 ± 4.37	88.61 ± 2.27
4c2f-CNN with two mechanisms	53.96 ± 3.80	90.04 ± 1.54
VGG-16	54.64 ± 4.76	54.64 ± 4.76
VGG-16 with two mechanisms	56.11 ± 5.05	90.66 ± 2.14
Pre-ResNets-34	60.15 ± 3.99	90.90 ± 1.67
Pre-ResNets-34 with two mechanisms	61.89 ± 4.16	93.50 ± 1.33
Pre-RoR-58+SD	62.50±4.33	93.63±1.90
Pre-RoR-58+SD with two mechanisms	64.17 ± 3.81	95.77±1.24

Conclusion

- We propose a Residual networks of Residual networks architecture (RoR) for high-resolution facial images age classification in the wild.
- Two modest mechanisms, pre-training by gender and training with weighted loss layer.
- By Pre-RoR with two mechanisms, we obtain new stateof-the-art performance on Adience dataset for age group classification in the wild.

THANKS

Ke Zhang

North China Electric Power University

zhangkeit@ncepu.cn