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Subspace clustering has been one important visual
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Given the data matrix X = [Xq,X,, ..., X,] € R™", the
output of m*" layer is denoted as
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the output H™ of the top layer in the neural network g a7 -
IS defined as: F 0
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NSC transforms the data matrix X into a nonlinear
space and then conducts the subspace clustering
iteratively. The objective function J of NSC can be
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J, utllizes the grouping effect and the effectiveness The USPS dataset oo |
of the grouping effect, which is formulated as: | o | |
1 We employed two evaluation criteria including the clustering error Jl.
J> =§U‘(CLCT) (5) (CE) and normalized mutual information (NMI) to evaluate the 0% _
. is the regularization term and aims to avoid the| |Performances of different subspace clustering methods. Clustering error NM|

model over-fitting, which is designed as:
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In this paper, we have proposed a nonlinear

The n_eural network can be updated by the following SsSC | LRR | LSR1 | LSrR? | SMR subspace clustering method (NSC) for image
paradigm: ) 231 | 286 | 303 | 269 | 261 cll_Js_tering. NSC simultgneously tra}nsforms the
wm — ywm) _ - original feature space Into a nonlinear space.
oW (m) (7) 58.4 | 545 | 57.8 | 65.3 | 66.1 Experimental results have clearly shown that our
b _ pm) _ 9 NSC achieve superior results than four state-of-the-
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