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• Combination of multiclass classification and 

statistical inference.
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Motivation

Estimate 𝑝(𝑦𝑘|𝑥)

SVM

• Small-sample-size(SSS)

Problem:

• Unequal-sample-size(USS)

• Incremental learning



Proposed Method

IIAP/QR Learning Model based on NLDA/QR[3] and IAP

IIAP/QR

[3] Delin Chu et al, “A new and fast 
implementation for null space based 
linear discriminant analysis,”Pattern 
Recognition2010.
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IIAP/QR

• The optimal projection matrix G

• KNN
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Centroid matrix C as input

• Solving SSS problem

• Reduce computational complexity

Incremental learning

• Adding novel classes

• Adding samples to existing classes

• Meeting quick updating need
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 Incremental Learning
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 The second QR factorization



 Experiments

Dataset (TPAMI2014)

cq decaf vgg19 aPascal

Dimension 2688 4096 4096 9751

Sample number of 
each training class

40 70 70 80

Sample number of 
each zero-shot class 

as test
30 40 40 70

Sample number of 
each initial training 

class
20 50 50 60

 aPascal, 20 classes with 64 attributes.

 AWA, 85 attributes,50 different kinds of animals. We choose ‘cq’, 

‘decaf’, ‘vgg19’feature representations.

AWA aPascal

Number of 
initial training 

classes
30 10

Number of 
zero-shot 

classes
10 5

Number of 
incremental 

classes
10 5



 Experiments

 Insertion of novel classes

• The bar : recognition rate

• The line : training time

• IAP: retraining of PAMI2014

• NLDA/QR: retraining of PR2010

• IDR/QR: incremental learning of 

TKDE2005

• IIAP/QR: ours
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 Insertion of novel classes

Accuracy: raise 8%-25% or comparable

Batch time: improve 2-3 orders of magnitude(centroid matrix)

Incremental phase time: faster 4-5 times than IDR/QR 



 Experiments

 Insertion of new samples to existing classes

ILDA/SSS: incremental learning of CVPR07



 Experiments

 Insertion of new samples to existing classes

Accuracy: raise 3%-12% or comparable

Time: improve 1-4 orders of magnitude(centroid matrix)



Conclusion

 Solve small-sample-size and unequal-sample-size problems

 Comparable recognition accuracy

 Online learning with quick updating



Thanks!


