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• Combination of multiclass classification and 

statistical inference.
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Indirect attribute prediction 
(IAP) 

𝑌 ∩ 𝑍 = ∅

Motivation

Estimate 𝑝(𝑦𝑘|𝑥)

SVM

• Small-sample-size(SSS)

Problem:

• Unequal-sample-size(USS)

• Incremental learning



Proposed Method

IIAP/QR Learning Model based on NLDA/QR[3] and IAP

IIAP/QR

[3] Delin Chu et al, “A new and fast 
implementation for null space based 
linear discriminant analysis,”Pattern 
Recognition2010.
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IIAP/QR Learning Model based on NLDA/QR[3] and IAP

IIAP/QR

• The optimal projection matrix G

• KNN
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IIAP/QR

NLDA/QR

• Twice QR factorizations

• Tackling SSS problem

Centroid matrix C as input

• Solving SSS problem

• Reduce computational complexity

Incremental learning

• Adding novel classes

• Adding samples to existing classes

• Meeting quick updating need
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 Incremental Learning

Assuming 1 sample of each classes are 

added into the model,  

 𝐶 = 𝑐′ 1 , … , 𝑐′ 𝐾 , 𝑐′ 𝑖 =
𝑐(𝑖)𝑛𝑖+𝑥(𝑖)

𝑛𝑖+1

 QR factorization of  𝐶

 The second QR factorization



 Experiments

Dataset (TPAMI2014)

cq decaf vgg19 aPascal

Dimension 2688 4096 4096 9751

Sample number of 
each training class

40 70 70 80

Sample number of 
each zero-shot class 

as test
30 40 40 70

Sample number of 
each initial training 

class
20 50 50 60

 aPascal, 20 classes with 64 attributes.

 AWA, 85 attributes,50 different kinds of animals. We choose ‘cq’, 

‘decaf’, ‘vgg19’feature representations.

AWA aPascal

Number of 
initial training 

classes
30 10

Number of 
zero-shot 

classes
10 5

Number of 
incremental 

classes
10 5



 Experiments

 Insertion of novel classes

• The bar : recognition rate

• The line : training time

• IAP: retraining of PAMI2014

• NLDA/QR: retraining of PR2010

• IDR/QR: incremental learning of 

TKDE2005

• IIAP/QR: ours
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 Experiments

 Insertion of novel classes

Accuracy: raise 8%-25% or comparable

Batch time: improve 2-3 orders of magnitude(centroid matrix)

Incremental phase time: faster 4-5 times than IDR/QR 
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 Insertion of new samples to existing classes

ILDA/SSS: incremental learning of CVPR07



 Experiments

 Insertion of new samples to existing classes

Accuracy: raise 3%-12% or comparable

Time: improve 1-4 orders of magnitude(centroid matrix)



Conclusion

 Solve small-sample-size and unequal-sample-size problems

 Comparable recognition accuracy

 Online learning with quick updating



Thanks!


