Multiview Pedestrian Localisation via a Prime Candidate Chart Based on Occupancy Likelihoods Yuyao Yan^{†*}, Ming Xu[†] and Jeremy S. Smith^{*}

Xi'an Jiaotong-Liverpool University 西交利加速する。 なりないない。 本の方子

INTRODUCTION

A sound way to localize occluded people is to project the foregrounds from multiple camera views to a reference view using homographies and finding the foreground intersections [1].

Fig.1 Phantom occurrence However, this may give rise to phantoms due to foreground intersections between different people. This research aims to identify the phantoms from the real intersections.

METHODOLOGY

The proposed method has four steps:

- . Extract foregrounds using GMM and segment side-byside pedestrians using convex hull analysis.
- 2. Using waist-plane homography mapping to find the foreground intersections.
- 3. Calculate the joint occupancy likelihood of each intersection.
- 4. Use the Quine-McCluskey method [2], along with the joint occupancy likelihood, to find the optimal solution.

COCCUPANCY LIKELIHOODS

Suppose there are *N* cameras and *F*_i represents the foreground observation in camera view *i*. Let X be the event that there is a pedestrian at intersection region I in the top view. We are interested in finding the posterior probability of event X occurring.

$$P(X/F_1, F_2, ..., F_N) \propto \prod_{i=1}^N [P(f_i|X)P(d_i|X$$

 $P(f_i|X) = \frac{number \ of \ foreground \ pixels \ in \ A_i}{number \ of \ all \ pixels \ in \ A_i}$

 $P(h_i|X) = 1 - Q_G(h_i)$ $P(d_i|X) = Q_{\gamma^2}(d_i, 1)$

Acknowledgement : This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 60975082 and an XJTLU PhD scholarship under Grant PGRS-12-02-07

[†] Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University * Department of Electrical Engineering and Electronics, University of Liverpool

 $(h_i|X)]$

Fig.2 Variables related to d_i and h_i .

PRIME CANDIDATE CHARTS

Each foreground region is decomposed into sub-regions according to the overlapping relationship of all the candidate boxes. A prime candidate chart is constructed to select a minimum set of pedestrian candidates to cover all the foreground sub-regions of interest. The prime candidate chart is updated as follows: . Remove the candidates with low occupancy likelihood.

- 2. Find the essential candidates which cover at least a sub-region that is not covered by other candidates and remove the corresponding rows and columns.
- 3. Merge the candidates which are contained by others.
- 4. If there are sub-regions not covered, select a column with two X's. Assume the candidate corresponding to an X is essential and repeat steps 2-3. Then try the other X and select the one with a larger likelihood.

	1		
	2		
3	4	5	
	6		

Sub-region:	1	2	3	4	5	6
Red	+	+	+	Χ	Χ	Χ
Green	Χ	Χ	+	Χ	Χ	+
Blue	+	Χ	Χ	Χ	+	Χ

Fig.3 Decomposition of a foreground region into sub-regions and the corresponding prime candidate chart. If a candidate covers a given sub-region, an X is placed; otherwise a plus sign.

REFERENCES

[1] S. M. Khan and M. Shah, "A multiview approach to tracking people in crowded scenes using a planar homography constraint,", ECCV 2006, Proceedings, Part IV, 2006, pp. 133–146. [2] W. V. Quine, "The problem of simplifying truth functions," The American Mathematical Monthly, vol. 59, no. 8, pp. 521–531, 1952. [3] A. Utasi and C. Benedek, "A bayesian approach on people localization in multicamera systems," IEEE Trans. Circuits Syst. Video Techn., vol. 23, no. 1, pp. 105–115, 2013. [4] P. Peng, Y. Tian, Y. Wang, J. Li, and T. Huang, "Robust multiple cameras pedestrian detection with multi-view bayesian network," Pattern Recognition, vol. 48, no. 5, pp. 1760–1772, 2015.

 I_i - Warped foreground intersection A_i - Candidate box

 f_i - Foreground pixel set in A_i t_i - The top of the foreground box $-A_i b_i$ - The bottom of the foreground box y_i y_i - The bottom of the candidate box d_i - Mahalanobis distance from y_i to b_i h_i - Distance from y_i to t_i

 \overline{h} - Average height of pedestrians

EXPERIMENTAL RESULTS

Fig.4 Pedestrians are labelled with circles; phantoms are labelled with crosses.

IO: I1: I2: I3: I4: I5: I6: I7: I8: I9: I9: I10:	LLLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRR	LLLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRR
I11:	++++++++++++++*XX +++++++++++++++++++++	I11: o ++++++++++++++++++++++++++++++++++
	(a)	(b)
IO:0 I1: I2: I3: I4: I5:0 I6:0 I7:0 I8:0 I9: I10:0 I11:0	LLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRRRRR	LLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRRR
	(c)	(d)

Fig.5 The prime candidate charts after step 1, 2, 3 and 4.

CONCLUSIONS

The joint occupancy likelihoods and the prime candidate chart used in this paper add robustness to pedestrian localization. Experiment results have shown improved performance.

	Method	Evaluation	RECALL	PRESISION	TER
y	3DMPP	[3]	N/A	N/A	0.31
and	POM	[3]	N/A	N/A	0.27
•	POM	us	0.91	0.82	0.29
-	MvBN	[4]	0.90	0.97	0.13
	Proposed	us	0.96	0.99	0.05

Table 1. Evaluation results.