

ENHANCING FEATURE DISCRIMINATION FOR UNSUPERVISED HASHING

Motivation

- > We hypothesize that: CNNs descriptors can boost the performance of state-of-the-art hashing methods, compared to hand-crafted descriptors.
- > "How can we further enhance discrimination of the features for hashing purpose?"
- Address the problem of producing <u>compact</u> but <u>very</u> discriminative features.

Contributions

Propose to embeds feature vector into a lowdimensional vector and, simultaneously, enhances the discriminative property of features before passing them into hashing.

Gaussian Mixture Model embedding (Gemb)

1. Dimensionality reduction

- Reduce computational cost
- Produce efficient hashing codes.
 - Balance hash code.
 - Bits are pairwise independent.
- Accomplished by PCA:independent

 $\tilde{X} = {\tilde{x}^{(1)}, ..., \tilde{x}^{(m)}} \in \mathbb{R}^d \to X = {x^{(1)}, ..., x^{(m)}} \in \mathbb{R}^D$ Where $D \ll d$.

Thanh-Toan Do^{*} Tuan Hoang⁺

*Singapore University of Technology and Design (SUTD)

Fig. 1: Our proposed Gemb method:

- + The **inputs** are <u>image global descriptors</u> such as GIST or CNN.
- + The outputs are the embedding features for hashing.

2. Posterior probability as embedding features

- □ Assume data belonging to a Gaussian Mixture Model (GMM): $\lambda = \{w_i, \mu_i, \Sigma_i\}_{i=1,...,N}$.
- \Box The embedding feature of a sample $x^{(t)}$:

 $z^{(t)} = \left| P(j|x^{(t)}, \mu_j, \Sigma_j); j = 1...N \right|$

The posterior probability captures the strength of relationship between a sample $x^{(t)}$ and a Gaussian model $N(\mu_i, \Sigma_i)$.

$$P(j|x^{(t)}, \mu_j, \Sigma_j) = \frac{w_j p_j(x^{(t)})}{\sum_{i=1}^N w_i p_i}$$

3. "Unsparsifying" by Power Normalization

(a) N = 16

Fig 2. Histogram of embedding features (in log scale) for CIFAR-10.

- Observation:
- Number of Gaussians ~ Embedding features sparsity.
- Global descriptors discrimination ~ Embedding features sparsity.
- \Box Unsparsifying: f(x) = sign(x)|x|

Dang-Khoa Le Tan⁺

Ngai-Man Cheung⁺

*University of Adelaide

Power Normalization

→ Output

- $^{(t)}|\mu_j,\Sigma_j)$ $_i(x^{(t)}|\mu_i, \Sigma_i)$

(a) N = 64

Visualize descriptors

(a) Without Gemb

Fig 3. Visualizing GIST descriptors of a subset of MNIST dataset.

Results

		mAP					
	Methods	CIFAR-10			LabelMe-12-50k		
		16	32	64	16	32	64
GIST 512-D	SH	12.88	12.71	12.99	10.74	10.76	10.95
	SpH	14.46	15.13	15.88	11.86	13.02	13.67
	BA	15.34	16.86	17.74	14.21	14.55	15.43
	ITQ	16.59	17.42	18.02	15.07	16.06	16.58
	Gemb+BA	20.80	22.20	22.45	19.95	21.64	21.69
	Gemb+ITQ	21.36	22.44	22.59	20.79	21.69	21.92
VGG-FC7	SH	18.31	16.54	15.78	12.60	12.59	12.24
	SpH	18.82	20.93	23.40	13.59	15.10	17.03
	BA	25.38	26.16	27.99	16.96	18.42	20.80
	ITQ	26.82	27.38	28.73	18.06	19.40	20.71
	Gemb+BA	27.24	28.52	29.97	22.63	24.05	24.19
	Gemb+ITQ	27.61	29.12	30.01	23.37	24.26	25.37

Table 1. Retrieval performance (mAP).

- performances GIST 512-D descriptors.
- ITQ significantly.

Reference

 \succ Link to code: https://github.com/hnanhtuan/Gemb

(b) Gemb (N = 32)

(c) Gemb (N = 64)

VGG-FC7 descriptors achieve higher hashing

Gemb clearly helps to boost performance of BA and

