

Label Consistent Matrix Factorization based Hashing for Cross-Modal Retrieval

CROSS-MODAL HASHING

A matrix factorization based hashing technique for cross-modal data

- **Single label or Multi label**
- **Supervised** algorithm
- **Capability of handling large amounts of data**
- **Online** settings

`minicooper' `car'

`automobile' `hotdog'

`street'

`sky' `reflection' `building'

'home' 'windows'

PROBLEM STATEMENT

Data
$$X_t \in R^{d_t imes N}$$
 Labels $X_L \in R^{d_c imes N}$

$$F = \sum_{t=1}^{2} \lambda_{t} \|X_{t} - U_{t}V_{t}\|_{F}^{2} + \lambda_{L} \|X_{L} - U_{L}V_{L}\|_{F}^{2} + \sum_{t=1}^{2} \alpha_{t} \|V_{L} - W_{t}V_{t}\|_{F}^{2}$$

Algorithm: For each iteration

`shadow' `man' `ground' `swing' `black' `night'

PROPOSED APPROACH

TRAINING WITH LARGE AMOUNTS OF DATA

A trick to handle large amounts of data No need for re-generation if training set = retrieval set An iterative scheme to handle data in mini-batches

```
Get X_t^{(i+1)} and X_L^{(i+1)} \leftarrow the new batch

Get V^i, U^i, W^i \leftarrow from the ith batch

Update U^{(i+1)} = (1 - \rho)U^i + \rho \nabla_U F^{(i+1)}

Update W^{(i+1)} = (1 - \rho)W^i + \rho \nabla_W F^{(i+1)}

Finally Compute V^{(i+1)}
```

EXPERIMENTAL RESULTS

MAP	@50 on	the			MAP@50 on the						
MIRFL	ICKR da	taset		NUS-WIDE dataset							
 Method		I-T		-1	Method	I-T		T-I			
	K=32	K=64	K=32	K=64	ŀ	<=32	K=64	K=32	K=64		
 CMSSH	0.66	0.66	0.64	0.63	CMSSH	0.52	0.52	0.42	0.41		
CVH	0.63	0.62	0.65	0.64	CVH	0.52	0.50	0.54	0.51		
MLBE	0.58	0.58	0.61	0.65	MLBE	0.45	0.47	0.48	0.50		
QCH	0.57	0.56	0.60	0.57	QCH	0.52	0.52	0.51	0.50		
LSSH	0.64	0.64	0.67	0.69	LSSH	0.55	0.56	0.66	0.68		
CMFH	0.60	0.63	0.60	0.64	CMFH	0.48	0.51	0.56	0.58		
CMCQ	0.67	0.67	0.73	0.73	CMCQ	0.59	0.59	0.70	0.71		
SePH	0.73	0.75	0.73	0.74	SePH	0.58	0.60	0.72	0.74		
Ours_1	0.68	0.69	0.74	0.73	Ours_1	0.59	0.59	0.75	0.76		

ANALYSIS OF THE ALGORITHM

Effect of ρ on the hash code learning framework for the NUS-WIDE dataset

Complexity of Algorithm : $O(d_t N k)$

Ours_2	0.68	0.85	0.86	0.86	Ours_2	0.74	0.76	0.85	0.84	
										/

FUTURE WORK

Possible directions of future work

 \Box Make the latent factors same i.e., $V_1 = V_2 = V$ and $W_1 = W_2 = W$

□ Make the dictionary variables similar i.e., $U_1 = U_2 = U$ (to handle dimensionality mismatch, use CCA, GMA, random projections, etc.)

Learning hash functions using non-linearity (end-to-end)

A Online adaptation of the hash functions to the incoming data.

Supported by IEEE Signal Processing Society Travel Grant

For each mini-batch i + 1