GlobalSIP 2015

A 6.16Gb/s 4.7pJ/bit/iteration LDPC decoder for IEEE 802.11ad standard in 40nm LP-CMOS

<u>Hiroyuki Motozuka</u>, Naoya Yosoku, Takenori Sakamoto, Takayuki Tsukizawa, Naganori Shirakata and Koji Takinami Panasonic Corporation

This work was partly supported by "The research and development project for expansion of radio spectrum resources" of The Ministry of Internal Affairs and Communications, Japan.

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Background

- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Background

- IEEE802.11ad 60 GHz band multi-gigabit wireless
- For mobile, challenge is power consumption
- LDPC decoder is one of the most power-hungry blocks

Achieve low power by improving LDPC decoder architecture

Previous work [1] 2.50 Gb/s (3.08 Gb/s uncoded) This work 4.62 Gb/s

(6.16 Gb/s uncoded)

[1] Tsukizawa, et al, ISSCC 2013

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

LDPC matrices in IEEE802.11ad

- Four matrices for different code rates
- Consist of cyclic shift sub-matrices

Min-Sum algorithm

- Min-Sum algorithm
 - Variable-Node processing (VN) column by column
 - Check-Node processing (CN) row by row

Parallel decoder architectures

 Parallel processing is required to achieve very high data rate – 6.16 Gb/s

Row-parallel – conventionally used for 11ad [2-4]

35	19	41	22	40	41	39	6	28	18	17	3	28			
29	30	0	8	33	22	17	4	27	28	20	27	24	23		
37	31	18	23	11	21	6	20	32	9	12	29		0	13	
25	22	4	34	31	3	14	15	4		14	18	13	13	22	24

Column-parallel

35	19	41	22	40	41	39	6	28	18	17	3	28			
29	30	0	8	33	22	17	4	27	28	20	27	24	23		
37	31	18	23	11	21	6	20	32	9	12	29		0	13	
25	22	4	34	31	3	14	15	4		14	18	13	13	22	24

[2] Park, JSSC 2014[3] Weiner, ISSCC 2014[4] Li, SiPS 2013

Conventional row-parallel architecture

- Memory and pipeline registers dominate the power consumption
 - Parallelized VNs require large working memory

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Proposed architecture – Overview

- Column-parallel architecture for IEEE802.11ad – Reduce memory size
- Low complexity variable cyclic shifters
 - Shorten critical path, and reduce pipeline registers

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Proposed column-parallel architecture

- Data flows "one way" without large working memory nor accumulators
- Small working memory for VN processing

Proposed column-parallel architecture

 C2V memory only needs to keep CN results instead of all C2V messages

Memory size comparison

- Reduces memory bits by 60%
- Memory size reduction directly contributes to power reduction

Comparison of Memory Size

	Park JSSC 2014	Weiner ISSCC2014	This work
Architecture	Row-parallel	Row-parallel with approximation	Column-parallel
Implementation	eDRAM, Flip-Flop	Flip-Flop	Flip-Flop
Total bits	30240	20832	12096
Reduction		-31%	-60%

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Reduce power on pipeline register

 By shortening critical path, we could reduce pipeline stages to three while achieving high speed processing

- conventionally 4 - 5 stages

Conventional variable cyclic shifter

- Variable shifters can be implemented as barrel shifters
- Possible shift values: 0 to 41

Radix-8 barrel shifter

Low complexity variable cyclic shifters

- The number of required shift values is limited to 9 – 13 for each shifter
- Utilize modulo addition

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Prototype chip

- Fabricated in 40nm CMOS process
- Achieve uncoded 6.16Gb/s
 - Maximum data rate in 11ad SC PHY

Designed LDPC decoder core

Die micrograph

Experiment Results

- Power consumption
 - Measured with fabricated chip
 - 203mW for 6.16Gb/s (16QAM, R=1/2)

Experiment Results

10

g

Performance comparison

 This work achieves the lowest normalized energy efficiency of 4.7 pJ/bit/iteration besides it achieves best BER performance

	This work	Weiner ISSCC2014	Li SiPS2013
CMOS Technology	40nm LP	28nm FDSOI	40nm G
Supply Voltage	1.1	1.07	0.9
Hardware Mapping	Column-parallel	Row-parallel	Half-row-parallel
Scheduling	Flooding	Flooding	Layered
Iterations	7	3.75	5
Throughput [Gb/s]	6.16	12	5.6
BER @Eb/N0=5dB, BPSK/QPSK	<10 ⁻⁸	<10 ⁻⁶	<10 ⁻⁶
Normalized Energy Efficiency [pJ/bit/Iteration]	4.7	6.0	7.0

- Background
- Overview of LDPC decoding for IEEE802.11ad
- Proposed low power architecture
 - Column-parallel architecture for IEEE802.11ad
 - Low complexity variable cyclic shifters
- Experiment results
- Conclusion

Conclusion

- We propose a novel LDPC decoder architecture for IEEE802.11ad. It features:
 - Column-parallel architecture, which reduces required memory bits by 60%
 - Low complexity variable shifters, which reduces complexity by 42%
- Proposed decoder achieves:
 - Normalized energy efficiency of 4.7pJ/bit/iteration without significant BER performance degradation