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Another underlying idea that will accompany us
Generative modeling of data sources enables
O A systematic algorithm development, &

O A theoretical analysis of their performance
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Our Data is Structured

Stock Market Text Documents

~ Matrix Data

Biological Signals

O We are surrounded by various diverse
sources of massive information

O Each of these sources have an internal
structure, which can be exploited

O This structure, when identified, is the

engine behind our ability to process this data S0 CLIEEE

Medical IMmaging m—
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Model?

Fact 1:
This signal
contains AWGN
N(0,1)

Fact 2:

The clean signal
is believed to
be PWC

Effective removal of noise (and many other tasks)
relies on an proper modeling of the signal
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Which Model to Choose?

O A model: a mathematical Principal-Component-Analysis

description of the underlying
signal of interest, describing our
beliefs regarding its structure

Gaussian-Mixture
Markov Random Field

Laplacian Smoothness

O The following is a partial list of 'DCT concentration
commonly used models for images ‘Wavelet Sparsity
O Good models should be simple while Piece-Wise-Smoothness
matching the signals
Simplicity ” Reliability
O Models are almost always imperfect
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An Example: JPEG and DCT

178KB — Raw data

o

How & why does it works?

.l:r o
Y |

Discrete

‘ Cosine ‘

Trans.

The model assumption: JELLEISPIGIM s T=R o] R[Sk

coefficients to be dominant and the rest zeros
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Research in Signal/Image Processing

Problem

(Application)

Numerical
Scheme

A New

The fields of signal & image processing are Research

essentially built of an evolution of models Work

and ways to use them for various tasks .(and Paper)
Is Born
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What This Talk is all About?

Data Models and Their Use

O Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,

compression, anomaly-detection, sampling, recognition,
separation, and more

O Sparse and Redundant Representations offer a new and
highly effective model — we call it

Sparseland

0 We shall describe this and descendant versions of it that
lead all the way to ... deep-learning
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Multi-Layered Convolutional
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A New Emerging Model

Signal

. Machine
Processing Learning Mathematics
Wavelet é Approximation
Theory Theory
AnaIyS|s Sparse[and' Algebra

Optimization

Signal Theory
Transforms ‘
Semi-Supervised Interpolation Source- >egmentation  “g.<or-Fusion
Learning : ] T
!nference (solving Separation Classification Summarizing
Compression inverse problems)

Prediction  Denoising Anomaly Synthesis

' Clustering *® |dentification ™ J€teClioN

-
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The Sparseland Model

0 Task: model image patches of
size 8% 8 pixels

0 We assume that a dictionary of
such image patches is given,

containing 256 atom images

O The Sparse[cmc[ model assumption:

every image patch can be
described as a linear

combination of few atoms
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The Sparse[ana[ Model

Properties of this model:

Sparsity and Redundancy

O We start with a 8-by-8 pixels patch and
represent it using 256 numbers

— This is a redundant representation

O However, out of those 256 elements in the
representation, only 3 are non-zeros

— This is a sparse representation

O Bottom line in this case: 64 numbers
representing the patch are replaced by 6
(3 for the indices of the non-zeros, and 3
for their entries)
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Chemistry of Data

We could refer to the Sparse[anc[
model as the chemistry of information:

O Our dictionary stands for the [ZSgleIe[(oME]o1[E
containing all the elements

e'"a" -
O Our model follows a similar rationale: e s A =" v . 2
Every molecule is built of few elements T =] !
LS PN -l
. g S
e "8 "c N o [ll] N 1 a2-1- .
0 Wse s [l o 2.0 N
P "o 5 ] [ e !l NGl ] o e " " ] = i
) e T (2| o o e (R i el g G “n "0 "0 e ] e o> o e 2 M -l
RG] s~ [ o i ] il " o " o [ e \ s D F, HEL .
e~ ] oo Sa! B i i (B R e " Do v s B e - R MNa,
a N B Sm b 6d o By o e Tm o e @ T W W :'| [ 10,
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Sparseland : A Formal Description

O Every columninD

(dictionary) is a
— M prototype signal (atom)

Y\ 4

4
v

[
»
R
J
.
)

' O The vector o is
— . " generated
with few non-
X ) zeros at arbitrary

locations and
values

A sparse

A Dictionary X
vector

D

r
[ €

O This is a generative model
that describes how (we
believe) signals are created
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Difficulties with Sparseland

O Problem 1: Given a signal, how
can we find its atom decomposition?

0 Asimple example:

= There are 2000 atoms in the dictionary

..-.I._F- ]
= The signal is known to be built of 15 atoms E;'_':;: e e O I —

2000 Cren - ' i
‘( jz2.4e+37 possibilities K~ . gnru&l
15 HCE" N E. 5EE 3
A 111 K 1.
E A | PREBEY " Ba
= |f each of these takes 1nano-sec to test, M- y ﬁaull* .-TH
will take ~7.5e20 years to finish 11111 » . TLlERE . |
. BT
O So, are we stuck? BT - P TR
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Atom Decomposition Made Formal

)

INEEEEEEEETE
v
-
v

Al b

ming ||ally s.t. x = Da

! h D

"\ p

ming llall s.t. IDa—yll, <¢ =
(04

A

<

[ g
[ €

Approximation Algorithms

" |,—counting number of
non-zeros in the vector

= This is a projection onto
the Sparseland model

el

Relaxation methods Greedy methods
= These problems are known

Basis-Pursuit Thresholding/OMP 0 be NP-Hard problem
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Pursuit Algorithms

ming [[allo s.t. [[Da—yll, <€

Approximation Algorithms

Basis Pursuit Matching Pursuit Thresholding

Change the L, into L, Find the support greedily, Multiply y by DT
and then the problem  ne element at a time and apply shrinkage:

becomes convex and , NN NN NSNS EEEE RN ) a=2%P B {DTy}

[ [T 1 (T T T T rrrriT]
A

)
g
)

mana ge a b | e 1
EEEEEEE

. [ ] HEEE
min, ||ol; R
[] HEE

S. t. [T rrrrrrrerrrrrrrrrrrrrrd
] HEE

|12

”D(X — YHZ <E€ R EEEEEEEEEEEEEEEEEEEEEEEE)
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Difficulties with Sparseland

O There are various pursuit algorithms

O Here is an example using the Basis Pursuit (L,):

O Surprising fact: Many of these algorithms are often
accompanied by theoretical guarantees for their
success, if the unknown is sparse enough

= | Michael Elad
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The Mutual Coherence

0 Compute ‘ D ]z
DT Assume '-._
normalized "ul
columns DTD

O The Mutual Coherence u(D) is the largest off-diagonal
entry in absolute value

0 We will pose all the theoretical results in this talk using
this property, due to its simplicity

O You may have heard of other ways to characterize the
dictionary (Restricted Isometry Property - RIP, Exact
Recovery Condition - ERC, Babel function, Spark, ...)
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Basis-Pursuit Success

Theorem: Given a noisy signal y = Da + v where ||v]||, < €
and «a is sufficiently sparse, | |
lallo < (1+

Allg < — —
» :
then Basis-Pursuit: min, |lal; s.t. |[|[Da—vy|, <€

42
1-p(4|lallp—1)

leads to a stable result: ||[&@ — |3 <

Donoho, Elad & Temlyakov (‘06)

Comments:

, O Ife=s0> 0=«

[ D ] O O Thisis a worst-case

: . mma ”O‘HO - analysis — better
E bounds exist
9‘/[ |IDa — y||2 O Similar theorems
L exist for many other

V][, < € pursuit algorithms
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Difficulties with Sparseland

O Problem 2: Given a family of signals, how do
we find the dictionary to represent it well?

O Solution: Learn! Gather a large set of
signals (many thousands), and find the

dictionary that sparsifies them e =gk = =
TS o e

O Such algorithms were developed in the ILS ~P -r"L ;!:E
past 10 years (e.g., K-SVD), and their =E~ : ZELI uwq .
formance is surprisingly good dhy Ba .o, megm

. o gahul rabnndeg]
0 We will not discuss this matter further AEL g M-Ik
in this talk due to lack of time an e A

R N
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Difficulties with Sparseland

O Problem 3: Why is this model suitable to
describe various sources? e.g., Is it good : K
for images? Audio? Stocks? ...

O General answer: Yes, this model is

extremely effective in representing R
various sources ] et
N - e
= Theoretical answer: Clear connection e
- BEE " J
to other models AT
.. . . RBEY " Ba
=  Empirical answer: In a large variety of signal HilL e
and image processing (and later machine ='.-i:-._:”.
learning), this model has been shown to lead R
to state-of-the-art results W Al
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Difficulties with Sparseland ?
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This Field has been rapidly GROW!| N G

Published Items in Each Year

O Sparse[anc[ has a great success in signal & 1
image processing and machine learning tasks

O In the past 8-9 years, many books were
published on this and closely related fields

Applied Mathematical Sciences

----------

Michael Elad

Sparseand
Redundant
Representations

From Theory to Applications
in Signal and Image Processing

@ Springer
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Coming Up A Massive Open Online Course

Sign In R4Sy

L Israel X

Sparse Representations in Sigha
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program

Starts on October 25, 2017

starts on February 28, 2018

Instructors

\ .

Pl =

P ' 4
¥ Yaniv Romano Michael Elad
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Spdi’se[dm[ for Image Processing

O When handling images, Sparse[anc[ is typically deployed on small

overlapping patches due to the desire to train the model to fit the
data better

O The model assumption is: each patch in the image is believed to
have a sparse representation w.r.t. a common local dictionary

O What is the corresponding global model? This brings us to ... the
Convolutional Sparse Coding (CSC)
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The Computer-Science Department
The Technion




Convolutional
Sparse Modeling

Joint work with

. A
Yaniv Romano Vardan Papyan Jeremias Sulam
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Convolutional Sparse Coding (CSC)

m filters convolved with their

i-th feature-map:
sparse representations

An image of the
T ¢ same size as X

holding the sparse
: representation

i me m

i o i . related to the i-filter
........ . EEEEEEEEEEEEEEEE [X] — d]. * [Fl] r m . -

An image 2 Frmemof]]
with N i=1 free

pixels S
i R :
AZ0ME The i-th filter of
Y ) .
e smallsizen
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CSC in Matrix Form

O Here is an alternative global sparsity-based model formulation

[Cl Cm] 1"1

m
X = Z CT' =
i=1

0C' € R¥*VN s a banded and Circulant
matrix containing a single atom

with all of its shifts
) A

oI'' € RY are the corresponding coefficients
ordered as column vectors

rm

ENEEEE

mm EEEEEE

m CEECEE

1 B B

I

m = [

EEEEE m |

T

RN

CEEC NN

DN
SN EEN
CEECEEN
CEEC N
CEE N
CEECEEN
LN
CEEEEN

RN I
W T ] bk
CrmESEE.

< N >
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The CSC Dictionary

.
| EEEEEE W EEEEET B RS )
[ AN _ EEEEE R I .
m  EEEE N  EEEE EEE EEED
m T EES EEE _EEE | EEE
o | _HE NN CEE B EEe
= 1 = ol | | —m EEOEEEC
o | ] ENEDEEE
W [  EEEEE . B[] =
1 2 371 ] . R | [ [ ] .
= m | EEEEE = = o [
BT . EEEEE = = [ [
BT [ . EEEEE = = [ [
B T [ (. EEEEE = = [ [
B o (. EEEEE W = ]
B o . EEEE o [
o [ = AN W EREC NN
_EROEEE  EEEEE W EEE. RN
W] e _EEREE N = ]
] [ | EEEEE W = ]
¢ TS . NN )

|
[ v |
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/7
stripe—dictionary/stripe vector ——J
X=DI -
/ Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary (€2) just
Riy1X = Qvyjq

¥is

as assumed for images
Michael Elad
g The Computer-Science Department
The Technion
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Classical Sparse Theory for CSC ?

mrin IT|lg s.t.|]|[Y—=DIJ, <¢

Theorem: BP is guaranteed to “succeed” .... if ||T|[p < %(1 i l%)

0 Assuming that m = 2 and n = 64 we have that [weich, '74]
u=0.063

O Success of pur :
The classiC S

Otp \/\d
for ’the .

does N
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Moving to Local Sparsity: Stripes

m = 2]
£0,0 Norm: ITl5,0, = max [lyillo :
bmln T3, s.t. |[Y—DI|; < '
» IT|[3, 00 is low — all y; are sparse — every i
. A
patch has a sparse representation over £ [

Vit -( Vi
The main question we aim to address is this: E )
\I
Can we generalize the vast theory of Sparse[anc[to this :
new notion of local sparsity? For example, could we £

provide guarantees for success for pursuit algorithms? F
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Success of OMP

Local noise
~ (per patch)

Theorem: If Y = DI' + E where /

1/ 1\ 1 IEIE,
||r||3oo<_(1+_>__, >
| 2 u’ l-l |rmin|

» then OMP run for ||T'||, iterations
1. Finds the correct support

IENI
1=(lIT1I3,00—1)1

2. [Tomp — TII5 <

Papyan, Sulam & Elad (“17)

This is a much better result — it allows
few non-zeros locally in each stripe, implying a
permitted O(N) non-zeros globally
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Success of the Basis Pursuit

E
[gp = min 5 IY — DT||5 + ATl

Theorem: For Y = DI + E, if A = 4||E||12)’oo  if

1
IT19,c0 < —(1 +
3 p(

then Basis Pursuit performs very
1. The support of [gp is contain

2. ITgp — Tlleo < 7.51IEIIS

3. Every entry greater than 7.5

4. TIgp isunique
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SKIP ?
Global Pursuit via Local Processing

1
0 Could we suggest a I'ep = min =||Y — DI||2 + A|ITl;
solution of the global r 2
Basis Pursuit using only ' ]

local (e.g. patch-based)
operations ?

O The answer is positive !!

O We define image
slices :

S; = Dy

Michael Elad
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Global Pursuit via Local Processing

1
(PP Typ =min =[|Y = DFII3 + Il

These two
are convex &
equivalent

Redefine this problem using s; and «;

Y - ZRiTsi
i

|
min -—
;,Sj 2

2
+7LZ||0li||1 s.t. {s;=Dpa;}i
2 i
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Two Comments About this Scheme

Michael Elad
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CSC and CNN

O There is a rough analogy between CSC and CNN:
= Convolutional structure
= Data driven models
= RelU is a sparsifying operator

0 We shall now propose a principled way to analyze CNN

O But first, a brief review of CNN...

Michael Elad
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CNN

RelLU RelLU
-

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun ‘15] RGLU(Z) = maX(Thr, Z)
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CNN

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun ‘15] RGLU(Z) = maX(Thr, Z)
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Mathematically...

f(Y) = ReLU (b, + W] ReLU(b; + W{Y))

Z, e RNz p, e RV W] € RVN™M2*Nm

) nymy b, € RN™ W € RNVmaxN
([ . \
[ 1 Y E_IRN\
= ReLU< == : %3 ReLU< == &3 >>
U B )
\ s = y
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From CSC to Multi-Layered CSC

XeRY Dy e RVN™ T € RV™ We propose to impose the
my same structure on the
representations themselves

[

Fl = ]Rle D2 = ]RleXNmZ r2 = RNmZ

_ msp i
Convolutional sparsity nmy
(CSC) assumes an I
inherent structure is = my (.

present in natural
signals

» Multi-Layer CSC (ML-CSC)
Michael Elad 45
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Intuition: From Atoms to Molecules

XeRY D, e RVN™ T, eERIMNT: T, € RN™

 —
 —

O We can chain the all the dictionaries
into one effective dictionary
Desf = D1DyD3 - D — X = Degr Ik

O This is a special Sparse[anc[ (indeed, a CSC) model
N 1y

O However: Y'r, € RVN™

= A key property in this model: sparsity of the intermediate representations

» The effective atoms: atoms

= | Michael Elad 46
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A Small Taste: Model Training (MNIST

MNIST Dictionary:

*D;: 32 filterge r 2 (dense)

B 1-99.09 % sparse
Narse

+D,: 128 fijf o

D,D, (15x15)
) -
2 1 ' 4

—

& S N f

D,D,D; (28x28

J| > J 1 v A P :"1:' =
&' ; ~— e '. # Rt} W E {  d [
e m e A" t PRI . [1= = - FP S
v il & s Ly Oy PERNAYS — , & B ;'u-“ 11 e "u - \'— - B 21 e '-'-'r. ¢ . CEREIC Rl S5 ’! !
O PR :‘E: Y VN v DAL i - P <l T DS i L P — e -Fd. - - 3 A E, -
B - = Gl o S Bl - AR RN - I R e < A e O ¢ | AREIA 2 3L S 2

s Mo N ;’{F 5, 0 _EeR < 02 i B D o 7 B okt « P - T

7ol " OREUG " B - S0 RS - ¢ B RV ABRSTAEA TS T A ol SR - /e

! . & TR G s <P L TRl A R < v R AR A TG A (= R RN - ;R

U B niAs B ST s A% - v TIA L S O o i L SR S R ST N O B RE,
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ML-CSC: Pursuit

0 Deep—Coding Problem (DCP, ) (dictionaries are known):

[ X =Dy
I = D,I;

O Or, more realistically for noisy signals,

Find {I‘j}]il S.t. <

(Y =Dyl <&
I = D,I

Michael Elad
The Computer-Science Department
The Technion
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A Small Taste: Pursuit

I
94.51 % sparse
(213 nnz)

I3
99.51% sparse
(5 nnz)

= | Michael Elad 49
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The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10 T T T T ]
Y=DI+E | |—Hp(z) - Hard L
) Sp(z) - Soft »
and I’ is sSparse 6 « Sg(z) - Soft Nonnegative . ¥
4 £
2 ¥ ’
U B e S M S S -
~ —2
I' = Ps(DTY) ”
—6
—8
—10

-0 -8 -6 -4 -2 0 2 4 6 8 10
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Consider this for Solving the DCP

O Layered thresholding (LT):
Estimate I'; via the THR algorithm

) K
(DCP{): Find {r,-}]_:1 s.t.

A (MY -DiLll, <€ INl§e <A
s — S
T, = Pg, (Dg ?Bl(DIY)) ] b —.Dzrz IT, 0,00 < g |
— - Z . S .
Estimate I, via the THR algorithm | Tk-1 = Dxlx ITiclf0,00 =< AK}

O Now let’s take a look at how Conv. Neural Network operates:
f(Y) = ReLU (b, + W ReLU(b, + W[TY))

The layered (soft nonnegative)
thresholding and the CNN forward pass
algorithm are the very same thing !!!
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Theoretical Path

3‘4 NWWWW
s

A

X=DI; ' . (DCPf) . {f,}K

I =D,T if.

L Layered THR e
I'k—1 = DIk X Y (Forward Pass)

Maybe other?
I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring questions

= | Michael Elad 59
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Theoretical Path: Possible Questions

O Having established the importance of the ML-CSC model and its
associated pursuit, the DCP problem, we now turn to its analysis

O The main questions we aim to address:

|. Stability of the solution obtained via the hard layered THR
algorithm (forward pass) ?

ll. Limitations of this (very simple) algorithm and alternative pursuit?

... and here are questions we will not touch today:

IIl. Algorithms for training the dictionaries {D;}ic; vs. CNN ?
IV. New insights on how to operate on signals via CNN ?

= | Michael Elad 53
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Success of the Layered-THR

»

Theorem:IfIII‘illgoo<l 1+ — |rr{::| L 'Sri]ﬁ_alx
o S u(dp) [rM| ) uoy  |rma|

then the Layered Hard THR (with the proper thresholds)
finds the correct supports and |[T{" — I‘i||l;oo < ¢!, where

we have defined & = ||E||12)’oo and

el = \/ INIE - (e + p(D) (T e — 1)ITM2%))

Papyan, Romano & Elad (‘17)

Problems:

1. Contrast

2. Error growth

3. Error even if no noise
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Layered Basis Pursuit (BP)

O We chose the Thresholding algorithm
due to its simplicity, but we do know
that there are better pursuit methods
— how about using them?

O Lets use the Basis Pursuit instead ...

\

1
FLBP = Hll,ln P Y — D1F1||% + A || T
1

LBP
FZ

\

1

) K
(DCP{): Find {1"]-}]_:1

(IY = DIy, < €

I =D,I,

I'x_1 = DIk

= min > || LBP — D, L[| + 221, Iy

”rlllg,oo = )\1\
”FZHS,OO = }\2

~N"

”FK”S,OO = )\KJ

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]

Michael Elad
The Computer-Science Department
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Success of the Layered BP

1) I

- . - 1500 <2
Theorem: Assuming that ||T|[ ., < s\t D)

then the Basis Pursuit performs very well:

1. The support of I‘{‘BP is contained in that of I
» 2. The erroris bounded: ||I‘{JBP — I‘i”Iz)oo < ¢!, where

el = 7.5E|2, }=1\/ I5ll; .,

3. Every entry in I greater than

_ Problems:
s}J/\/III‘illg’oowill be found 1. Contrast
\ 2. Error growth
Papyan, Romano & Elad (‘17) 3. -Errer-even-H-Re-Reise
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Layered lterative Thresholding

Layered BP: I‘]-LBP—mln || LBP Djri||§+zi”ri”1 ]

.~

Layered lterative Soft-Thresholding:

S (rjt—l + DI (Tj_; — Djrjt—l))

Note that our suggestion
implies that groups of layers Can be seen as a very deep

share the same dictionaries recurrent neural network

Michael Elad [Gregor & LeCun “10] .
g The Computer-Science Department
The Technion




¥

Time to Conclude

Michael Elad
The Computer-Science Department
The Technion
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This Talk

Take Home Message 1:
Generative modeling of data
sources enables algorithm
development along with
oretica

N

'+d

A novel interpretation
and theoretical
understanding of CNN
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Sparseland

Novel View of
Convolutional
Sparse Coding

Multi-Layer

Convolutional
Sparse Coding

The desire to

model data
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Convolutional Sparse
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More on these (including these slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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The Computer-Science Department
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