Al: A Signal Processing Perspective
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Al: Deep Learners

e Advances in nonlinear function approximation (learning)

F* = argmin Eyx ., [( f(x),1
J fez <00 (x). )] Annotated Data

Input X, outputy

Function Family Loss Function
(DNN architecture)  (e.g., MSE)

e Functions:

Probabllities, features, representations, manipulations
Nonlinear and data-driven



Al: Deep Learners

e Advances in nonlinear function approximation (learning)
« From high-dimensionality to Sparse Representation
o Supervised estimation (mostly)

e Continuous wrt model parameters: enables stochastic gradient
descent (SGD) optimization

* Leverage Moore’s Law (specialized circuits, memory,
computational architectures, multi-core machines)

Output

Hidden layer 2

Hidden layer 1

Deep Learning (2016)

Input
Glorot 2011




Al: Deep Learners

e [sSSues
* Model interpretability difficult
» Massive models generally require massive training
* Many hyper-parameters, set by experiment
 Performance analysis & bounds not easily derived
» Modeling for robustness & outliers not straightforward
 Adaptive updating not straightforward

Normalization

Dropout

Stride

Hand-designed training augmentation
Parameter choices: guess & check
SGD: Gradient clipping, momentum, ...

Experiment

Analysis

& Simulation

Good news: code sharing community



Performance

Qualitative DNN History

Network Size (~Depth)

CPU to GPU for training speedup

Performance

Training Data Size

Historical ebb & flow with
unsupervised pre-training, & fully
supervised training

ImageNet
2009, 14Mil images
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CNN: Convolutional Neural Network

 Modular, intuitive, feed-forward, efficient

« Dominant approach for image processing,
manipulation, object detection, object classification
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Graphic: Random Grab from Internet



CNN Layer

Next laver
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Convolutional Laver Stride (down sampling)

Large response

in pooling unit

Large
response Pooling stage
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+ The Rectified Linear Activation Function

Detector sStagoe:
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2., rectified linear
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Convolution stage: . ) )
. o Rectified Linear Unit (ReLU)
Affine transform o
(Half-Wave Rectifier)

A

Input to laver

Deep Learning (2016)



CNN: Sparse Activation I o

 Invariance: combine training & prior information

» Translation, rotation, scaling, elastic deformations

* CNN learns the features, and learns to pool them,
to achieve invariance

» Sparse use of layered (distributed) feature
representation is efficient and avoids the curse of
dimensionality

Hidden layer 2

Hidden layer 1

Input
Glorot 2011

on |y

Gabor Filters

Learned Filters: 1t Layer

Deep Learning (2016)



CNN: Classification

Convolution Pooling Convolution Pooling Fully Fully Qutput Predictions
Connected Connected

- - = dog [0.01)
1 cat (0.04)
boat (0.94)
bird (0.02)

Linear Classifier

Although images lie on a highly nonlinear manifold, CNN maps
Images to representations that are linearly separable

After decades of feature selection & classification ...

Tractable bio-inspired function class, computational feasibility,
sufficient data, persistent experimentation

Learns the features, and learns to pool them, simultaneously



Adversarial Examples
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 Training leads to concentration around a low-Dim manifold
 f(x) may behave correctly near the manifold but not off it . Normal Tungen

» Unreliable estimation may occur with input “far” from the
distribution of the training data

axy

Deep Learning (2016)



Example 1: Probability and Novelty Detection

» Autonomous navigation: train DNN to estimate probability of collision given
camera input & action (direction, velocity)

 Control: Infer safe navigation from visual content & structure

* Robustness issue: Detect novel environment (untrained upon) and act
accordingly
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(a) Real hallway. (b) Simulated hallway. (¢) Simulated forest.

Richter, Roy, RSS 2017



Example 1: Autoencoder & Novelty Detector
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e DNN: Compress & reconstruct  Novelty Detector: Does trained
« Unsupervised: minimize reconstruction autoencoder faithfully reproduce
a new input?

error
. ° 1 .
e Learns a compressed representation of Reconstruction error grows with
input “novelty

the signal class

Richter, Roy, RSS 2017



Example 1: Robust Control

(b) Output. (¢) Input. (d) Output.

fnet (?;ta at) if fnovel(it) =0
Ppr.(btg a-t) if fnovel('it) =1

.ﬁi(ita bta a’t) =

[a} ‘Collision™, {h] Cnilmun (c] “‘Non-Collision™.

Control falls back to
more conservative prior
when in unknown
environment

(d) Image for 1(a). (e) Image for 1(b). (I} Image for lc).

Richter, Roy, RSS 2017



Representation
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Sequence to sequence mapping
Learn encoder-representation-decoder simultaneously
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Representation & Manipulation

» Representations as features: classification

« Representations as sufficient measures: language
translation

e Manipulating Representations



Example 2: Image Manipulation by Deep
Feature Interpolation (DFI)

* Image manipulation by linear interpolation in feature space

Younger g Original === Oler

K. Bala, etal., 2017



Step 1: Select source and target images by matching input attributes
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Example 2: Image Reconstruction

L, | ‘
z = arg min 5||((:-';>(x) +aw)—o(z)||5+ Ay s Rys ()
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 Reconstruction via Optimization

 Find the image that best maps to the new
representation

 Total variation regularization for smoothness



Example 2: DFI Outputs

Representation Interpolation

Original = =sssssee » Facial Hair

K. Bala, etal., 2017
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Al: Discussion

 Our response to Al

* Human imagination of Al dramatically outperforms our
ability to implement Al

o Attracted & repelled simultaneously
e Want smart machines, and fear what this means

* Hills & valleys of Al progress perceived with very sharp
gradients

e Al has a time-varying definition
» Understanding & implementation breeds acceptance & normalcy

 Can we do better than biology?
» Sometimes (e.g., wheel)



Intelligent Systems
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