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AI: Deep Learners 
• Advances in nonlinear function approximation (learning)

Function Family 
(DNN architecture)

Loss Function
(e.g., MSE)

Annotated Data
Input x, output y

• Functions:
Probabilities, features, representations, manipulations

Nonlinear and data-driven



AI: Deep Learners 
• Advances in nonlinear function approximation (learning)

• From high-dimensionality to Sparse Representation
• Supervised estimation (mostly)
• Continuous wrt model parameters: enables stochastic gradient 

descent (SGD) optimization
• Leverage Moore’s Law (specialized circuits, memory, 

computational architectures, multi-core machines)

Deep Learning (2016)



AI: Deep Learners 
• Issues

• Model interpretability difficult
• Massive models generally require massive training
• Many hyper-parameters, set by experiment 
• Performance analysis & bounds not easily derived
• Modeling for robustness & outliers not straightforward
• Adaptive updating not straightforward

• Normalization
• Dropout
• Stride
• Hand-designed training augmentation
• Parameter choices: guess & check
• SGD: Gradient clipping, momentum, … 

• Good news: code sharing community
Simulation

Experiment
Analysis



Qualitative DNN History
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CPU to GPU for training speedup

ImageNet
2009, 14Mil images

Historical ebb & flow with 
unsupervised pre-training, & fully 

supervised training



DNN Classifiers

ImageNet Error Rates

Google

At or exceeding “human performance”



CNN: Convolutional Neural Network

• Modular, intuitive, feed-forward, efficient

• Dominant approach for image processing, 
manipulation, object detection, object classification

Graphic: Random Grab from Internet



CNN Layer

Stride (down sampling)

Rectified Linear Unit (ReLU) 
(Half-Wave Rectifier)

Deep Learning (2016)



CNN: Sparse Activation
• Invariance: combine training & prior information
• Translation, rotation, scaling, elastic deformations
• CNN learns the features, and learns to pool them, 

to achieve invariance
• Sparse use of layered (distributed) feature 

representation is efficient and avoids the curse of 
dimensionality

Glorot 2011

Gabor FiltersLearned Filters: 1st Layer

Deep Learning (2016)



CNN: Classification

Although images lie on a highly nonlinear manifold, CNN maps 
images to representations that are linearly separable

After decades of feature selection & classification …

Tractable bio-inspired function class, computational feasibility, 
sufficient data, persistent experimentation

Learns the features, and learns to pool them, simultaneously

Linear Classifier



Adversarial Examples

Deep Learning (2016)

• Training leads to concentration around a low-Dim manifold
• f(x) may behave correctly near the manifold but not off it
• Unreliable estimation may occur with input “far” from the 

distribution of the training data

Nguyen et al., 2015



Example 1: Probability and Novelty Detection
• Autonomous navigation: train DNN to estimate probability of collision given 

camera input & action (direction, velocity)
• Control: Infer safe navigation from visual content & structure
• Robustness issue: Detect novel environment (untrained upon) and act 

accordingly

Richter, Roy, RSS 2017

Color codes 
velocity



Example 1: Autoencoder & Novelty Detector

• DNN: Compress & reconstruct
• Unsupervised: minimize reconstruction 

error
• Learns a compressed representation of 

the signal class

• Novelty Detector: Does trained 
autoencoder faithfully reproduce 
a new input?

• Reconstruction error grows with 
input “novelty”

Richter, Roy, RSS 2017



Example 1: Robust Control

Richter, Roy, RSS 2017

Control falls back to 
more conservative prior 
when in unknown 
environment



Representation

Deep Learning (2016)

Sequence to sequence mapping
Learn encoder-representation-decoder simultaneously

context 
variable



Representation & Manipulation

• Representations as features: classification

• Representations as sufficient measures: language 
translation

• Manipulating Representations



Example 2: Image Manipulation by Deep 
Feature Interpolation (DFI)

• Image manipulation by linear interpolation in feature space

K. Bala, et al., 2017



K. Bala, et al., 2017



Example 2: Image Reconstruction

• Reconstruction via Optimization
• Find the image that best maps to the new 

representation
• Total variation regularization for smoothness



K. Bala, et al., 2017

Example 2: DFI Outputs
Representation Interpolation 

Attribute Matching
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AI: Discussion
• Our response to AI

• Human imagination of AI dramatically outperforms our 
ability to implement AI

• Attracted & repelled simultaneously
• Want smart machines, and fear what this means
• Hills & valleys of AI progress perceived with very sharp 

gradients

• AI has a time-varying definition
• Understanding & implementation breeds acceptance & normalcy

• Can we do better than biology?
• Sometimes (e.g., wheel)
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