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Introduction 
 

What is Matrix Completion? 

 
The aim is to recover a low‐rank matrix given only a subset 

of its possibly noisy entries, e.g., 
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Let  be a matrix with missing entries: 

 

  

  
where  is a subset of the complete set of entries , 

while the unknown entries are assumed zero. 

 

Matrix completion refers to finding , given the 
incomplete observations  with the low‐rank information of 

, which can be mathematically formulated as: 

 
 

 
That is, among all matrices consistent with the observed 

entries, we look for the one with minimum rank. 
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Why Matrix Completion is Important? 

 

It is a core problem in many applications including: 
 

 Collaborative Filtering 

 Image Inpainting and Restoration 

 System Identification 

 Node Localization 

 Genotype Imputation 

 

It is because many real-world signals can be approximated 
by a matrix whose rank is . 

 

Netflix Prize, whose goal was to accurately predict user 
preferences with the use of a database of over 100 million 
movie ratings made by 480,189 users in 17,770 films, 
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which corresponds to the task of completing a matrix with 

around 99% missing entries. 
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How to Recover an Incomplete Matrix? 

 

Directly solving the noise-free version: 
 

 

 

or noisy version: 

 
   

 

is difficult because the rank minimization problem is NP-
hard. 

 

A popular and practical solution is to replace the nonconvex 
rank by convex nuclear norm: 
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or 
  

 

where  equals the sum of singular values of . 

However, complexity of nuclear norm minimization is still 
high and this approach is not robust if  contains outliers. 
 

Another popular direction which is computationally simple is 

to apply low-rank matrix factorization: 
 

 

 

where  and . Again, the Frobenius norm is 

not robust against impulsive noise. 
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Matrix Completion via lp-norm Factorization 
 

To achieve outlier resistance, we robustify the matrix 

factorization formulation via generalization of the Frobenius 
norm to ‐norm where : 

 
 

 
where  denotes the element-wise -norm of a matrix: 
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Iterative lp-Regression 
 
To ‐norm minimization, our first idea is to adopt the 

alternating minimization strategy: 

 
 

and 

 
 

 

where the algorithm is initialized with , and  represents 

the estimate of  at the th iteration. 
 

After determining  and , the target matrix is obtained as 
. 
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We now focus on solving: 

 
 

 
for a fixed . Note that  is dropped for notational 

simplicity.  

 
Denoting the th row of  and the th column of  as  and 

, where , , , the problem can 

be rewritten as: 

 
 

 
Since  is decoupled w.r.t. , it is equivalent to solving 

the following  independent subproblems: 
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where  denotes the set 

containing the row indices for the th column in . Here,  

stands for the cardinality of  and in general . 
 

For example, consider : 
 

 

 

For , the  and  entries are observed, and thus 

. Similarly,  and . Combining 

the results yields .  



H. C. So                                                                                       Page 13                                                              

Define  containing the  rows indexed by : 

 

 

 
and , then we obtain:  

 

 

 

which is a robust linear regression in ‐space.  

 

For , it is a least squares (LS) problem with solution 

being , and the corresponding computational 

complexity is . 
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For , the ‐regression can be efficiently solved by 

the iteratively reweighted least squares (IRLS). At the th 

iteration, the IRLS solves the following weighted LS problem: 

 
 

 
where  with 

 

 

 
The  is the th element of  and . As only 

one LS problem is required to solve in each IRLS iteration, 
its complexity is . Hence the total complexity for 

all  -regressions is  due to . 
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Due to the same structure in , 

 

The th row of  is updated by 

 
 

 
where  is the set containing the 

column indices for the th row in .  

 
Using previous example, only  entry is observed for , 

and thus . Similarly, ,  and 

. Here,  contains  columns indexed 

by  and . The involved complexity 

is  and hence the total complexity for solving all 

 ‐regressions is  due to . 
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ADMM 
 

Assign: 
 

 

The proposed robust formulation is then equivalent to: 

 

 

 

Its augmented Lagrangian is:  

 

   

 
where  with  for  contains  

Lagrange multipliers. 
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The Lagrange multiplier method aims to find a saddle point 

of: 

 
 

 

The solution is obtained by applying the ADMM via the 

following iterative steps: 
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Ignoring the constant term independent of , it is shown 

that 

 
 

 

is equivalent to: 

 

   

 
which can be solved by Algorithm 1 with , with a 

complexity bound of , where  is the required 

iteration number. 
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For the problem of 

 
 

 

It can be simplified as: 

 

 

 

where 

 

 

 

We only need to consider the entries indexed by  because 
other entries of  and  which are not in  are zero.  
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Defining , , , and  as the vectors that contain 

the observed entries in , , , and , we have the  

equivalent vector optimization problem: 
 

 

 

whose solution can be written in proximity operator: 
 

 

 

Denoting  and , , as the th entry of  and , 

and noting the separability of the problem, we solve  

independent scalar problems instead: 
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For , closed‐form solution exists: 
 

 
 

with a marginal complexity of . 
 

For , the solution of the scalar minimization problem is: 
 

 

where  with  being the unique root of: 
 

 

 

in  and the bisection method can be used.  
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Although computing the proximity operator for  still has 

a complexity of , it is more complicated than  

because there is no closed‐form solution.  

 

On the other hand, the solution for the case of  can 

be obtained in a similar manner. Again, there is no closed‐

form solution and calculating the proximity operator for 
 has a complexity of  although an iterative 

procedure for root finding is required.  

 

Note that the choice of  is more robust than employing 

 and is computationally simpler. 
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For 
 

 
 

It is converted in vector form: 
 

 
 

whose complexity is .  
 

Note that at each iteration,  instead of  is needed to 

compute, whose complexity is  because only  inner 

products  are calculated. 
 

The algorithm is terminated when 

  

 



H. C. So                                                                                       Page 25                                                              
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Numerical Examples 
 

 is generated by multiplying  and 

 whose entries are standard Gaussian distribution. 
 

45% entries of  are randomly selected as observations. 
 

,  and . 
 

Performance measure is: 
 

 

 

CPU times for attaining  of SVT, SVP, -

regression with  and  and ADMM with  are 

10.7s, 8.0s, 0.28s, 4.5s, and 0.28s, respectively. 
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RMSE versus iteration number in noise-free case 
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RMSE versus iteration number in GMM noise at SNR=6dB 
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RMSE versus SNR 
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Results of image inpainting in salt-and-pepper noise 
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Concluding Remarks 
 

 Two algorithms for robust matrix completion using low-
rank factorization via -norm minimization with  

are devised. 
 

 The first tackles the nonconvex factorization with missing 
data by iteratively solving multiple independent linear -

regressions. 

 
 The second applies ADMM in ‐space: At each iteration, 

it requires solving a LS matrix factorization problem and 
calculating proximity operator of the th power of ‐

norm. The LS factorization can be efficiently solved using 
linear LS regression while the proximity operator has 
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closed‐form solution for  or can be obtained by root 

finding of a scalar nonlinear equation for .  

 

 Both are based on alternating optimization, and have 

comparable recovery performance and computational 
complexity of  where  is a fixed constant of 

several hundreds to thousands. 

 

 Their superiority over the SVT and SVP in terms of 

implementation complexity, recovery capability and 
outlier-robustness is demonstrated. 
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