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Networked data

Internet Online social media Clean energy & grid

I Networked data structures encode relationships between elements

I How to evaluate dissimilarities between networks remain unclear
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Network comparison

I Neurodegenerate

I Association with brain network

I Feature heuristics so far

I Not specific to a region of the brain

I But more about global properties

I Need to be compared as unlabeled entities
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My approach

I Define and estimate distances between unlabeled networks

I More generalizable

I Universal and avoid conflicting statement

I High order networks

I Relationships between three or four nodes, or even singleton
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High order networks

I Network NK
X =

(
X , r0X , r

1
X , . . . , r

K
X

)
⇒ rkX is a mapping

k+1︷ ︸︸ ︷
X × X · · · × X → R+

⇒ r2X (x1, x2, x2) = r1X (x1, x2)

I Proximity network PK
X if rkX (x0:k) ≤ rk−1X (x0:k−1)

⇒ Order decreasing

I Dissimilarity network DK
X if rkX (x0:k) ≥ rk−1X (x0:k−1)

⇒ Order increasing

W. Huang and A. Ribeiro Persistent Homology Approximations on Network Distances 5



Correspondence

I A correspondence C between X and Y is C ⊆ X × Y s.t.

I ∀x ∈ X , there exists y ∈ Y such that (x , y) ∈ C

I ∀y ∈ Y , there exists x ∈ X such that (x , y) ∈ C

I Generalizes permutations

I C(X ,Y ) the set of all correspondences
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Network metric

I Given proximity networks PK
X and PK

Y and a correspondence C

I Define the k-order network difference with respect to C as

Γk
X ,Y (C ) := max

(x0:k ,y0:k )∈C

∣∣rkX (x0:k)− rkY (y0:k)
∣∣ .

I The k-order proximity network distance is defined as

dk
P(PK

X ,P
K
Y ) := min

C∈C(X ,Y )

{
Γk
X ,Y (C )

}
.

Theorem

dk
P : PK × PK → R+ is a metric in space PK mod ∼=k for k ≥ 1 and a

pseudometric in PK mod ∼=0.
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Applications
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Applications

-0.1 -0.05 0 0.05 0.1 0.15
-0.05

0

0.05

0.1

d0
P

-0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

d1
P

-0.05 0 0.05 0.1 0.15 0.2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

d2
P

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

dP,1

W. Huang and A. Ribeiro Persistent Homology Approximations on Network Distances 9



Motivation for lower bounds

I Computable for large networks

I Admittedly, lower bounds may suffer same problems as features

I Large lower bound entails a large distance

I Upper bound easy to establish

⇒ Used to estimate distance intervals
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Simplex

I k-simplex [x0:k ] is the convex hull of the set of points x0:k

a

vertex [a]

0-simplex

a

b

edge [a, b]

1-simplex

a

b

c

triangle [a, b, c]

2-simplex

a
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d

tetrahedron [a, b, c, d ]

3-simplex
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Simplicial complex

I Simplicial complex L is the collection of simplices glued together

a b

cd
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Homology (1 of 2)

I We want to describe holes that do not have interiors

I Why do we consider them ⇒ think of rubber bands

⇒ Rubber band enclosing them cannot be diminished
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Homology (2 of 2)

I We want to describe holes that do not have interiors

⇒ Homological features are defined to formalize this

⇒ Cycles without any interiors

a b

cd
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Homology (2 of 2)

I Homological features describe hole with no interior

I [a, b], [b, d ], [d , a] forms a hole that has interior

⇒ Not a Homological feature

I [d , b], [b, c], [c , d ] forms a hole with no interior

⇒ Is homological feature

a b

d
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Homology (2 of 2)

I Homological features describe hole with no interior

I [a, b], [b, d ], [d , a] forms a hole that has interior

⇒ Not a Homological feature

I [d , b], [b, c], [c , d ] forms a hole with no interior

⇒ Is homological feature

b

cd
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Homological features

I Homological features describe hole with no interior

1 feature 1 feature 2 features 1 feature
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cd
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cd
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cd
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Filtrations

I Simplicial complexes form unweighted networks

I No way to incorporate weights

I To solve this problem, assign each simplex a value

I The time when this simplex appears

.
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Filtrations

I Simplicial complexes form unweighted networks

I No way to incorporate weights

I To solve this problem, assign each simplex a value

I The time when this simplex appears
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Filtrations

I Simplicial complexes form unweighted networks

I No way to incorporate weights

I To solve this problem, assign each simplex a value

I The time when this simplex appears
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Filtrations

I Simplicial complexes form unweighted networks

I No way to incorporate weights

I To solve this problem, assign each simplex a value

I The time when this simplex appears
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Filtrations

I Simplicial complexes form unweighted networks

I No way to incorporate weights

I To solve this problem, assign each simplex a value

I The time when this simplex appears
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Persistent Homology (1 of 2)

I Quantify when do holes and interiors appear
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Persistent Homology (1 of 2)

I Quantify when do holes and interiors appear
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Persistent Homology (1 of 2)

I Quantify when do holes and interiors appear
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Persistent Homology (1 of 2)

I Quantify when do holes and interiors appear
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Persistent Homology (1 of 2)

I Quantify when do holes and interiors appear
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Persistent Homology (2 of 2)

I Quantify when do holes and interiors appear

0.8

0.2

0.3

0.5

0.1

0.2

0.3

0.5

0.1

0.2

0.3

0.5 0.7

0.1

0.2

0.3

0.5 0.7

a

bc

a b

cd

a b

cd

a b

cd

0 0.5
0

∞

0 0.5
0

∞

0 0.50.7
0

∞

0 0.50.7
0

0.8

∞

W. Huang and A. Ribeiro Persistent Homology Approximations on Network Distances 28



Difference between persistence diagrams

I Bottleneck distance d∞B (Q, Q̃) between two point sets Q and Q̃

d∞B (Q, Q̃) = min
π

max
q∈Q
‖q − π(q)‖∞ ,

I where π ranges over all bijections from Q to Q̃

I |Q| = |Q̃| are point sets in two dimensional space
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Diagrams with different cardinalities

I d∞B ill-defined if for diagrams with different cardinalities

I Homological features trivialized at the same time they appear

I Add diagonal points to the persistence diagram with fewer nodes

I Linear Bottleneck Assignment Problem : minπ maxi c(qi , q̃π(i))

c(q, q̃) = min

{
‖q − q̃‖∞ ,

1

2
max {|qx − qy | , |q̃x − q̃y |}

}
.

0 0.5
0

∞

0 0.50.7
0

0.8

∞

d∞
B (Q, Q̃) = 1

2
|0.8− 0.7| = 0.05

W. Huang and A. Ribeiro Persistent Homology Approximations on Network Distances 30



Network metric lower bounds

Theorem

d∞B between the k-persistence diagrams of the filtrations L(DK
X ) and

L(DK
Y ) is at most dD,∞(DK

X ,D
K
Y ) for any 0 ≤ k ≤ K , i.e.

d∞B (PkL(DK
X ),PkL(DK

Y )) ≤ dD,∞(DK
X ,D

K
Y ).
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Bound is tight

Theorem

Any k-order relationships between full rank tuples of DK
X appear either in

the death time of the (k − 1)-th dimensional homological features or the

birth time of the k-th dimensional homological features.
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Application

-30 -20 -10 0 10 20 30
-15

-10

-5

0

5

10

15

TSP

TSP

d∞
B (P0L) removed

-30 -20 -10 0 10 20 30
-10

-5

0

5

10

15

20

TSP

TSP

d∞
B (P0L) replaced

-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

TSP →

↓ TSP

d∞
B (P1L) replaced

-6 -4 -2 0 2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

5

TSP →

TSP →

d∞
B (P2L) replaced

-40 -30 -20 -10 0 10 20 30 40 50
-20

-10

0

10

20

30

40

TAC - TSP

-30 -20 -10 0 10 20 30 40 50
-20

-15

-10

-5

0

5

10

15

20

25

TAC - TWC

-40 -30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

40

TSP - TWC

W. Huang and A. Ribeiro Persistent Homology Approximations on Network Distances 33



Future directions

I Applications

I Brain networks at finer scale

I Pattern recognition from time series of observations

I Theory

I Clustering based on distance intervals

I Graph structure inference
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