

Persistent Homology Approximations on Network Distances

Weiyu Huang and Alejandro Ribeiro

Department of Electrical and Systems Engineering University of Pennsylvania whuang@seas.upenn.edu http://www.weiyuhuang.net

> December 16, 2015 GlobalSIP'2015

W. Huang and A. Ribeiro

- Networked data structures encode relationships between elements
- ▶ How to evaluate dissimilarities between networks remain unclear

- Neurodegenerate
 - Association with brain network
 - Feature heuristics so far
 - Not specific to a region of the brain
 - But more about global properties
 - Need to be compared as unlabeled entities

- Define and estimate distances between unlabeled networks
 - More generalizable
 - Universal and avoid conflicting statement
- High order networks
 - Relationships between three or four nodes, or even singleton

- ► Network $N_X^K = (X, r_X^0, r_X^1, \dots, r_X^K)$ $\Rightarrow r_X^k$ is a mapping $\overbrace{X \times X \cdots \times X}^{k+1} \rightarrow \mathbb{R}_+$ $\Rightarrow r_X^2(x_1, x_2, x_2) = r_X^1(x_1, x_2)$ ► Proximity network P_X^K if $r_X^k(x_{0:k}) \leq r_X^{k-1}(x_{0:k-1})$
 - \Rightarrow Order decreasing
- Dissimilarity network D_X^K if $r_X^k(x_{0:k}) \ge r_X^{k-1}(x_{0:k-1})$

 \Rightarrow Order increasing

Correspondence

- A correspondence C between X and Y is $C \subseteq X \times Y$ s.t.
- ▶ $\forall x \in X$, there exists $y \in Y$ such that $(x, y) \in C$
- ▶ $\forall y \in Y$, there exists $x \in X$ such that $(x, y) \in C$
- Generalizes permutations
- C(X, Y) the set of all correspondences

- Given proximity networks P_X^K and P_Y^K and a correspondence C
- ▶ Define the *k*-order network difference with respect to *C* as

$$\Gamma_{X,Y}^{k}(C) := \max_{(x_{0:k},y_{0:k}) \in C} |r_{X}^{k}(x_{0:k}) - r_{Y}^{k}(y_{0:k})|.$$

▶ The *k*-order proximity network distance is defined as

$$d_{\mathcal{P}}^{k}(P_{X}^{K},P_{Y}^{K}) := \min_{C \in \mathcal{C}(X,Y)} \left\{ \Gamma_{X,Y}^{k}(C) \right\}.$$

Theorem

 $\frac{d_{\mathcal{P}}^{k}}{\mathcal{P}^{\mathcal{K}} \times \mathcal{P}^{\mathcal{K}} \to \mathbb{R}_{+} \text{ is a metric in space } \mathcal{P}^{\mathcal{K}} \mod \cong_{k} \text{ for } k \geq 1 \text{ and a pseudometric in } \mathcal{P}^{\mathcal{K}} \mod \cong_{0}.$

Applications

- Computable for large networks
- Admittedly, lower bounds may suffer same problems as features
- Large lower bound entails a large distance
- Upper bound easy to establish
 - \Rightarrow Used to estimate distance intervals

• k-simplex $[x_{0:k}]$ is the convex hull of the set of points $x_{0:k}$

► Simplicial complex *L* is the collection of simplices glued together

- We want to describe holes that do not have interiors
- \blacktriangleright Why do we consider them $\ \Rightarrow$ think of rubber bands

 \Rightarrow Rubber band enclosing them cannot be diminished

- We want to describe holes that do not have interiors
 - \Rightarrow Homological features are defined to formalize this
 - \Rightarrow Cycles without any interiors

Homology (2 of 2)

- Homological features describe hole with no interior
- [a, b], [b, d], [d, a] forms a hole that has interior
 ⇒ Not a Homological feature
- [d, b], [b, c], [c, d] forms a hole with no interior
 - \Rightarrow Is homological feature

Homology (2 of 2)

Homological features describe hole with no interior

- [a, b], [b, d], [d, a] forms a hole that has interior
 ⇒ Not a Homological feature
- ▶ [*d*, *b*], [*b*, *c*], [*c*, *d*] forms a hole with no interior

 \Rightarrow Is homological feature

Homological features describe hole with no interior

- No way to incorporate weights
- To solve this problem, assign each simplex a value
- The time when this simplex appears

- No way to incorporate weights
- To solve this problem, assign each simplex a value
- The time when this simplex appears

- No way to incorporate weights
- To solve this problem, assign each simplex a value
- The time when this simplex appears

- No way to incorporate weights
- To solve this problem, assign each simplex a value
- The time when this simplex appears

- No way to incorporate weights
- To solve this problem, assign each simplex a value
- The time when this simplex appears

Difference between persistence diagrams

▶ Bottleneck distance $d^{\infty}_{\mathsf{B}}(Q, \tilde{Q})$ between two point sets Q and \tilde{Q}

$$d_{\mathsf{B}}^{\infty}(Q, \tilde{Q}) = \min_{\pi} \max_{q \in Q} \left\| q - \pi(q) \right\|_{\infty},$$

- where π ranges over all bijections from Q to \tilde{Q}
- $|Q| = |\tilde{Q}|$ are point sets in two dimensional space

Diagrams with different cardinalities

- ▶ $d_{\rm B}^{\infty}$ ill-defined if for diagrams with different cardinalities
- Homological features trivialized at the same time they appear
- Add diagonal points to the persistence diagram with fewer nodes
- Linear Bottleneck Assignment Problem : $\min_{\pi} \max_{i} c(q_{i}, \tilde{q}_{\pi(i)})$

$$c(q, ilde{q}) = \min \left\{ \left\| q - ilde{q}
ight\|_{\infty}, rac{1}{2} \max \left\{ \left| q_x - q_y
ight|, \left| ilde{q}_x - ilde{q}_y
ight|
ight\}
ight\}.$$

Theorem

 d_B^{∞} between the k-persistence diagrams of the filtrations $\mathcal{L}(D_X^K)$ and $\mathcal{L}(D_Y^K)$ is at most $d_{\mathcal{D},\infty}(D_X^K, D_Y^K)$ for any $0 \le k \le K$, i.e.

$$d_{B}^{\infty}(\mathcal{P}_{k}\mathcal{L}(D_{X}^{K}),\mathcal{P}_{k}\mathcal{L}(D_{Y}^{K})) \leq d_{\mathcal{D},\infty}(D_{X}^{K},D_{Y}^{K}).$$

Theorem

Any k-order relationships between full rank tuples of D_X^K appear either in the death time of the (k - 1)-th dimensional homological features or the birth time of the k-th dimensional homological features.

Applications

- Brain networks at finer scale
- Pattern recognition from time series of observations
- ► Theory
 - Clustering based on distance intervals
 - Graph structure inference