HOW SAMPLING RATE AFFECTS CROSS-DOMAIN TRANSFER LEARNING FOR VIDEO DESCRIPTION

Yu-Sheng Chou¹, Pai-Heng Hsiao², Shou-De Lin¹ and Hong-Yuan Mark Liao³ ¹Graduate Institute of Networking and Multimedia, National Taiwan University, Taiwan ²Memorence A.I., Taipei City, Taiwan ³Institute of Information Science, Academia Sinica, Taiwan

Two Issues Associated with Video-tolanguage Transfer Learning Problem

- How to transfer knowledge learned from a more general dataset to a specific application domain dataset?
- How to generate stable video description results under different sampling rates?

Architecture for Temporal Representation Transfer

• We leverage a stacked LSTM encoder-decoder structure and propose a temporal embedding method to better retain temporal representation under different video sampling rates for the transfer learning task.

Examples of Automatic Video Description at Different Sampling Rates on MSR-VTT

(a) set of frames grabbed by sparser sampling rate: "a car is crashing."

 TELSA mechanism can transfer temporal embeddings and adjust visual representations in encoding phase (TELSA mechanism in dash line rectangle is only activated when fine-tuning on target domain).

Experiments

 Single-domain Analysis: MSR-VTT. We dealt with the imbalanced sampling rate problem within single domain, i.e., the trained source domain and the target domain were both in MSR-VTT.

Train:Test	METEOR	BLEU			
samples		@1	@2	@3	@4
80:80	26.10	75.50	60.30	46.70	34.80
40:80	25.40	75.40	58.80	44.20	32.20

(b) set of frames grabbed by denser sampling rate: "a car is dashing with a bus."

Problem Formulation and Transfer Learning on Temporal Representation

Video-to-language translation with LSTM:

 $p(y|x) = \prod_{t=1}^{m} p(y_t|h_{n+t-1}, y_{n+t-1}, z)$

Temporal embedding learning with soft-attention (TELSA):

$$z = \prod_{t=1}^{n} p(y_t | h_{t-1}, \alpha_i^{(t)} \tilde{v}_i)$$

Dynamic weights $\alpha_i^{(t)}$: $\tilde{v}_i = E(v_i)$
 $e_i^{(t)} = w^T tanh(W_a h_{t-1} + \tilde{v}_i + b_a)$

40:80+TELSA

26.0077.4061.5047.3034.60

 Cross-domain Analysis: MSR-VTT to MSVD. We handled the imbalanced sampling rate problem within cross-domain environment.

Method	Single Domain		Transfer Learning			
	Source	Target	Fine-tuning	ours		
A: 40S:80T						
METEOR BLEU@1 BLEU@2 BLEU@3 BLEU@4	26.80 67.90 50.30 38.20 27.10	26.70 69.90 54.10 43.70 33.20	28.14 72.35 57.25 46.79 36.81	29.19 74.49 59.78 49.26 39.01		
B: 80S:80T						
METEOR BLEU@1 BLEU@2 BLEU@3 BLEU@4	26.90 69.10 52.40 40.60 29.50	26.70 69.90 54.10 43.70 33.20	27.99 72.38 57.02 46.45 36.53	28.55 73.07 57.49 47.01 36.67		
C: 120S:80T						
METEOR BLEU@1 BLEU@2 BLEU@3 BLEU@4	26.00 67.70 50.60 39.10 27.60	26.70 69.90 54.10 43.70 33.20	27.30 71.15 56.10 45.65 35.30	28.00 72.08 56.65 46.13 35.75		

Test Video Clip

-

Ground Truth: a man scores a goal in soccer.

	A: 40S:80T	B: 80S:80T	C: 1
Source Data Only:	a man is playing a video game.	a man is playing a football game.	a man is playin
Fine-tuning: Fine-tuning + TELSA:	a man is playing football. a soccer player is playing the goal.	a man is playing football. a man is playing a soccer game.	a football player is a football playe

C: 120S:80T

a man is playing a football game. football player is running down the field. a football player is playing football.