

Complexity Reduction of EVD-Based Diffuse Power Spectral Density Estimators using the Power Method

Marvin Tammen*

Ina Kodrasi*†

Simon Doclo*

PROBLEM STATEMENT

- microphone signals corrupted by reverberation and noise
- multi-channel Wiener filter (MWF) requires PSD estimates
- recently proposed **diffuse PSD estimator based on eigenvalue decomposition (EVD)**, which does not require relative early transfer function (RETF) vector of desired speech source [1]
- **goal**: reduce **computational cost** of EVD-based PSD estimator

SIGNAL MODEL

 microphone signal model in STFT-domain, independent processing in each subband

$$\mathbf{y}(I) = \mathbf{x}(I) + \mathbf{d}(I) \text{ with } \mathbf{y}(I) = \begin{bmatrix} Y_1(I) \\ \vdots \\ Y_M(I) \end{bmatrix}$$

- M microphones, time frame I
- $\mathbf{x}(I)$: direct and early speech component
- $\mathbf{d}(I)$: diffuse noise and reverberation
- microphone PSD matrix

$$\mathbf{\Phi}_{\mathbf{y}}(I) = \mathcal{E}\{\mathbf{y}(I)\mathbf{y}^{H}(I)\} = \mathbf{\Phi}_{\mathbf{s}}(I)\mathbf{a}(I)\mathbf{a}^{H}(I) + \mathbf{\Phi}_{\mathbf{d}}(I)\mathbf{\Gamma}$$

- **a**(I): RETF vector, Γ : diffuse coherence matrix
- Φ_s, Φ_d : speech and diffuse PSD

MULTICHANNEL WIENER FILTER

- stage I: MVDR beamformer $\mathbf{w}(I) = \frac{\mathbf{\Gamma}^{-1}\mathbf{a}(I)}{\mathbf{a}^{H}(I)\mathbf{\Gamma}^{-1}\mathbf{a}(I)}$
- stage II: spectro-temporal postfilter $G(I) = \frac{\hat{\Phi}_s(I)}{\hat{\Phi}_s(I) + \hat{\Phi}_d(I)/(\mathbf{a}^H(I)\mathbf{\Gamma}^{-1}\mathbf{a}(I))}$ requires estimate of speech PSD $\Phi_s(I)$ and diffuse PSD $\Phi_d(I)$

EVD-BASED DIFFUSE PSD ESTIMATOR

- exploit PSD matrix structure
 - \blacksquare prewhitening based on Cholesky decomposition: $\Gamma = \mathbf{L}\mathbf{L}^H$

$$\mathbf{\Phi}_{\mathbf{y}}^{W}(I) = \mathbf{L}^{-1}\mathbf{\Phi}_{\mathbf{y}}(I)\mathbf{L}^{-H} = \mathbf{\Phi}_{\mathbf{s}}(I)\underbrace{\mathbf{L}^{-1}\mathbf{a}(I)}_{\mathbf{b}(I)}\underbrace{\mathbf{a}^{H}(I)\mathbf{L}^{-H}}_{\mathbf{b}^{H}(I)} + \mathbf{\Phi}_{\mathbf{d}}(I)\mathbf{I}_{M}$$

- rank-1 term $\Phi_s(I)\mathbf{b}(I)\mathbf{b}^H(I)$ has one non-zero eigenvalue $\sigma(I)$
- \blacksquare term $\Phi_d(I)$ \blacksquare_M adds offset $\Phi_d(I)$ to eigenvalues

$$\lambda_1\{\boldsymbol{\Phi}_{\mathbf{v}}^{w}(I)\} = \sigma(I) + \Phi_{d}(I), \qquad \lambda_i\{\boldsymbol{\Phi}_{\mathbf{v}}^{w}(I)\} = \Phi_{d}(I), \quad i \in \{2, ..., M\}$$

- in practice, model not perfect $\rightarrow \lambda_i \neq \lambda_j$, $i, j \in \{2, ..., M\}, i \neq j$
- estimate $\Phi_d(I)$ using either second eigenvalue or mean of smallest M-1 eigenvalues

$$\hat{\Phi}_{d,\text{EIG2}}(I) = \lambda_2 \{ \mathbf{\Phi}_{\mathbf{y}}^{\text{w}}(I) \}$$

$$\hat{\Phi}_{d,\text{EIG1}}(I) = \frac{1}{M-1} \left(\text{trace } \{ \mathbf{\Phi}_{\mathbf{y}}^{\text{w}}(I) \} - \lambda_1 \{ \mathbf{\Phi}_{\mathbf{y}}^{\text{w}}(I) \} \right)$$

 \blacksquare eigenvalue decomposition of $M \times M$ matrix required for each STFT bin

high performance

high complexity

POWER METHOD

- since only first or second eigenvalue of $\Phi_{\mathbf{y}}^{\mathbf{w}}(I)$ are required, computational cost can be reduced using **power method**
- power method iteratively estimates dominant eigenvalue provided that

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_M|$$

and can also estimate additional eigenvalues using rank reduction

- initialization: random or estimate from previous frame
- convergence speed: depends on $|\lambda_1|/|\lambda_2|$
- **complexity** (flops):
- λ_1 : $N(16M^2 + 2M 2)$
- λ_2 :
- $2N(16M^2 + 2M 2) + 5M^2$
- full EVD using Hessenberg QR algorithm: $4/3M^3 + \mathcal{O}(M^2)$

```
In: \Phi_{\mathbf{y}}^{W}(I) \in \mathbb{C}^{M \times M}, number of iterations N

Out: estimates \hat{\lambda}_{1} \{ \Phi_{\mathbf{y}}^{W}(I) \}, \hat{\lambda}_{2} \{ \Phi_{\mathbf{y}}^{W}(I) \}

for m = 1 to 2 do

| initialize \mathbf{u}_{m}^{(0)} \in \mathbb{C}^{M};
| for n = 1 to N do

| \mathbf{t} = \Phi_{\mathbf{y}}^{W}(I)\mathbf{u}_{m}^{(n-1)}; // power iteration
| \mathbf{u}_{m}^{(n)} = \mathbf{t}/||\mathbf{t}||_{2};
| \lambda_{m}^{(n)} = \mathbf{u}_{m}^{(n),H}\Phi_{\mathbf{y}}^{W}(I)\mathbf{u}_{m}^{(n)}; // RAYLEIGH quotient
| end
| \hat{\lambda}_{m} \{ \Phi_{\mathbf{y}}^{W}(I) \} = \lambda_{m}^{(N)};
| // matrix rank reduction
| \Phi_{\mathbf{y}}^{W}(I) = \Phi_{\mathbf{y}}^{W}(I) - \hat{\lambda}_{m} \{ \Phi_{\mathbf{y}}^{W}(I) \} \mathbf{u}_{m}^{(N),H};
| end
```

SIMULATION SETUP

- M = 4 microphones, $f_s = 16$ kHz
- diffuse babble noise [2] at $\mathrm{SNR_{in}} = \{10, \ldots, 40\}\,\mathrm{dB},$ no sensor noise

	array geometry	mic. distance	θ	T ₆₀
AS_1	linear	$d=8\mathrm{cm}$	45°	0.61 s
AS_2	circular	$r = 10 {\rm cm}$	45°	$0.73\mathrm{s}$
AS_3	linear	$d=6\mathrm{cm}$	-15°	1.25 s

- STFT: 64 ms frame length ($N_{\text{FFT}} = 1024$), 16 ms shift
- $\Phi_{V}(I)$ estimated using recursive averaging, 40 ms smoothing constant
- speech PSD $\Phi_s(I)$ estimated using decision-directed approach[3]
- performance measures:
- PSD estimation error (averaged over frames and frequencies)
- speech quality of processed signal $\hat{S}(I)$ using fwsSNR and PESQ

RESULTS

- **PSD estimation accuracy**: different initialization, $SNR_{in} = 10 \, dB$, AS_1
 - convergence to full EVD after few iterations
 - best initialization utilizing estimate of previous frame

- **computational complexity**: non-optimized runtimes, N = 2
 - power method significantly faster
 - no noticeable difference in accuracy

Method	Total Error / dB	Av. Duration / 10^{-5} s
Power Method, λ_1	6.09	0.35
QR Method, λ_1	6.11	1.03
QZ Method (MATLAB), λ_1	6.16	0.55

speech quality of processed signal using different PSD estimates (average over AS_{1-3} , N=2)

no significant difference between power method and full EVD