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1 Introduction: System Identification

IKS

System
Identification

ĥ(n)
h(n)

Example: Fast measurements of HRTFs
→ Different approaches exist

For static acoustic measurements: Inverse Cyclic
Convolution (ICC) with Exponential Sweeps ICC

For dynamic tracking of systems: Normalized Least
Mean Square (NLMS)-type algorithms with so-
called Periodic Perfect Sequences (PPSEQ)

ϕxx(λ) = Ex for λmodN=0
0 otherwise PP

SE
Q

NLMS

Equivalence of ICC and NLMS for PPSEQ input [1],
based on efficient NLMS implementation [2]
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Abstract

Linear transmissio
n systems are often characterized by

their impulse
responses. A sim

ple and fast approach to

acquire
these impulse

responses is the normalized least-

mean-square (NLMS) algorithm in combination with a per-

fect sequence excitation. It is not only applicable to static

impulse
response measurements, but has been optimized

especially for the tracking of time varying linear systems.

In this paper, different implementation stra
tegies of the

perfect sequence excited NLMS algorithm, namely the ef-

ficient NLMS and the inverse cyclic convolution algorithm,

are discussed and compared in terms of performance, com-

plexity, and applicability
. As a main result it is shown that

for certain conditions all algorithmic variants can be trans-

ferred to each other.

1 Introduction

Several approaches have been proposed to solve the prob-

lem of system identification and tracking given the input

and the output signal of an unknown linear transmissio
n

system. A digital model for a typical system identifica-

tion approach is illustra
ted in Fig. 1. The unknown linear

transmissio
n system and the adaptive filter are represented

by their time varying impulse responses in vector notation

g(k
) and h(k

), respectively, with time index k. In order

to consider the influence of an unavoidable measurement

noise, n(k)
is added to the system response r(k)

.

One approach to solve this problem is the normalized

least-m
ean-square (NLMS) algorithm excited with a per-

fect sequence (PSEQ) p̃(k)
acccording to [1, 2], where

the adaptation process is driven by the error signal e(k)
.

This technique has been used for a wide range of appli-

cations. On one hand, it can be used with
the focus on

identification, e.g., to perform
static measurements, such

as measurements of acoustic
transfer functions. On the

other hand, due to its rapid tracking ability
the PSEQ ex-

cited NLMS process is also capable to cope with time vari-

ant system indentification. In these applications rather the

tracking aspect is predominant. Examples are sim
ulations

of time variant room impulse responses [2], medical appli-

cations as sonotubometry
for real-tim

e monitoring of the

Eustachischen tube activity [3], or continuously
measured

and tracked head-related transfer functions (HRTFs) [4].

In [5, 6], a new efficient versio
n of the PSEQ excited

NLMS process has been proposed. The advantage is its

drastic
reduction of the computational effort.

Besides its

relation to the conventional NLMS algorithm the efficient

NLMS also
bears a certain resemblance to a sim

ple in-

verse
cyclic convolution (ICC) approach. For this reason

we want to provide a deeper understa
nding regarding the

different algorithms and their relations. Besides the theo-

retical and numerical aspects especially complexity prop-

erties are of interest for real-tim
e implementations.
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Figure 1: Digital model for system identification.

The paper is organized as follows. Sec. 2 summarizes

the main characteristi
cs of PSEQs as far as they are of rel-

evance for the theoretical derivations.
The objective of

Sec. 3 is to give a review of the three considered system

identification variants,
i.e., the NLMS, the efficient

NLMS, and the ICC. Hereafter, the direct mathematical

compariso
n between the algorithms is evolved in Sec. 4.

Finally, sim
ulation results in Sec. 5 testify

the theoretical

conclusions and complexity aspects are presented.

2 Perfect Sequences (PSEQs)

All system identification algorithms considered in this pa-

per are excited with so called perfect sequences (PSEQs).

A PSEQ is a discrete sequence p(k)
of length N with an

impulse like periodic autocorrelation function

ϕ̃ pp(λ
) =

N−1

∑
k=0

p̃(k)
p̃(k

+λ )

(1)

=

{ ‖p(k
)‖2

for λ modN = 0

0
else ,

(2)

where p̃(k)
denotes the periodically

repeated sequence

p(k)
and ‖ · ‖

2 the quadratic
norm.

For notational

clarity
we introduce the PSEQ

excitation vectors

p(k
) =

(p̃(k
), p̃(

k− 1), .
. . ,

p̃(k
−N + 1))

T . Since p̃(k)
is

periodic, only N different excitation vectors

p(k
) =

p j

(3)

exist with j=
k mod N. As the excitation vectors are cycli-

cally shifted versio
ns of each other, all excitation vectors

have the same energy according to

Ep
= ‖p(k

)‖2 = ‖p j‖
2 = p

T
jp

j
with

j =
k mod N . (4)

The discrete Fourier transformation (DFT) of a PSEQ has

a constant magnitude with

|DFT{ p̃(k)
}N|=

|P(k,
μ)|=

1/
√ Ep

.

(5)
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ABSTRACT

The paper discusses computationally ef cient NLMS and RLS al-

gorithms for perfect periodic excitation sequences. The most inter-

esting aspect of these algorithms is that they are exact NLMS and

RLS algorithms suitable for identi cation and tracking of every lin-

ear system and they require a real-time computational effort of just a

multiplication, an addition and a subtraction per sample time. More-

over, the algorithms have convergence and tracking properties that

can be comparable to or even better than the NLMS algorithm with

a white noise input. The transient and steady state behavior of the

algorithms is also studied in the paper.

Index Terms— Adaptive lters, adaptive signal processing

1. INTRODUCTION

One of the most common approaches for identi cation and tracking

of linear systems comes from the concepts of adaptive lter theory.

A time-varying linear system can be identi ed and tracked by using

an adaptive FIR lter of suf cient memory length having the same

input of the unknown system, as in Fig. 1. The coef cients of the

FIR lter are adapted with an iterative adaptation algorithm in order

to minimize the error between the two systems’ outputs in accor-

dance with some minimization criterion. For this purpose, the most

successful adaptive algorithms are the Least Mean Square (LMS)

algorithm, and its normalized version, the NLMS algorithm. The

excitation signal of the unknown system is often determined by the

speci c application. When the designer is allowed to choose an ex-

citation signal, the choice falls almost always on a white random

noise. Indeed, in the class of random signals, a white random noise

excitation guarantees the fastest convergence speed of the NLMS

algorithm. The authors of [1] and [2] have argued that the excita-

tion signal that optimizes the convergence speed of the NLMS al-

gorithm is a deterministic Perfect Periodic Sequence (PPSEQ) with

period equal to the memory length of the adaptive FIR lter. Peri-

odic sequences have been widely used for the identi cation of lin-

ear systems. Periodic pulse sequences, maximal length sequences,

PPSEQs and even generic periodic sequences are often employed

for this purpose. Compared with the other sequences, the PPSEQs

are particularly suitable for identi cation because by de nition they

have a perfect periodic autocorrelation function. It has been proved

in [1–4] that without output noise, an NLMS algorithm excited by a

PPSEQ of period N is capable of identifying a linear system within

N samples. In a different contest, this result has already been proved

in a paper of 1971 about the Kaczmarz iterative method for solving

systems of linear equations. In noiseless conditions, [5] proves also

the convergence of the NLMS algorithm for every periodic input sig-

nal and it provides an expression for the asymptotic solution. It was

shown in [1, 2] that when the unknown system has memory length

Unknow
n System

FIR Filter

+

+

x(n)

ν(n)

d(n)

e(n)

y(n)

Fig. 1. An adaptive FIR lter.

smaller than or equal to N , the adaptive lter converges to the un-

known system impulse response ew; when the unknown system has

memory length longer than N , the adaptive lter converges to a time

aliased version of ew with period N . In presence of output noise, the

convergence performance of the NLMS algorithm with PPSEQ input

is always better than or comparable to that of the NLMS algorithm

with a white random noise input that provides the same steady-state

system distance [3]. The approach of [1,2] was extended in [3,4] for

the identi cation of multichannel linear systems. The works of [1–4]

have inspired the results presented in this paper.

Here we rst derive computationally ef cient NLMS and RLS

algorithms for identi cation and tracking of linear systems with a

PPSEQ excitation. The proposed algorithms are exact LMS and RLS

algorithms that require a real-time computational effort of just a mul-

tiplication, an addition and a subtraction per sample time. Then, the

transient and steady-state behavior of the algorithms are analyzed.

The rest of the paper is organized as follows. In Section 2, the

PPSEQs are reviewed. In Section 3, the LMS and RLS algorithms

for PPSEQs are discussed. The transient and steady-state behavior

of the algorithms are discussed in Section 4. Simulation results are

given in Section 5. Eventually, some concluding remarks are pro-

vided in Section 6. For simplicity, we consider real signals in this

paper. The systems we want to identify are assumed to be LTI or

linear time-varying. Similarly, we present the single channel case

here, but the results can be easily extended to the multichannel case

by following the arguments of [3, 4].

Throughout the paper, lowercase boldface letters are used to de-

note vectors, uppercase boldface letters are used to denote matrices,

the symbol ©N denotes the circular convolution of order N , E[·] de-

notes the mathematical expectation, DFT{·} and IDFT{·} denote

the Discrete Fourier Transform (DFT) and the Inverse DFT (IDFT)

of the argument, respectively, A
∗ denotes the complex conjugate of

A, ‖ · ‖ denotes the Euclidean norm, and �·� is the largest integer

smaller than or equal to the argument.

2. PERFECT PERIODIC SEQUENCES

A PPSEQ is a periodic sequence p(n) of period N with perfect pe-

riodic autocorrelation function,

[2]

This work is a generalization of [1] showing the equivalence also for arbitrary
periodic input signals for the NLMS implementation in [3]

2 System Model
System to be identified:

h(n) =
h0(n) h1(n) · · · hN−1(n)

T

Excitation vector:
x(n) =

x(n) x(n− 1) · · · x(n−N + 1)
T

Output of system:
d(n) = hT(n) · x(n) correspondingly: ĥ(n), d(n), d̂(n), y(n)

x(n) h(n)

ĥ(n)

d(n) y(n)

d̂(n)

v(n)

adaptation

mic signalmeasurement noise

i Notation & Auxiliary Operators

Discrete Fourier Transform via DFT matrix F
DFT: X(n) = F · x(n)
IDFT: x(n) = F−1 ·X(n)

DF
T

m
at
rix

F

Permutation matrix Γ(n) reorders elements of vector, beginning with
n-th element going cyclically backwards through vector
Example: N = 5, n = 2

Γ(n) =



0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0



=



0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



·



1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0



shifting matrix Γ̆(n) mirroring matrix Γ̄

x(n)

x(n
−

1)

x(n
− 2)x(n− 3)

x
(n
−

4)

x(n)
x(n− 2)

x(n
−

3)

x(n
− 4)x(n)

x
(n
−

1)

Γ̆(2)·x(n)

x(n)

x(n
−

4)

x(n
− 3)x(n− 2)

x
(n
−

1)

Γ̄ · x(n)

Γ̆(2)

shifting
Γ̄

mirroring

Pe
rm

ut
at
ion

m
at
rix

Γ

F =



ω0·0 ω0·1 · · · ω0·(N−1)

ω1·0 ω1·1 · · · ω1·(N−1)

···
···

···
···

ω(N−1)·0 ω(N−1)·1 · · · ω(N−1)·(N−1)



with ω = e−j 2π
N

3 Efficient NLMS Algorithm (eNLMS)[3]
Novel description of [3]

ĥeNLMS(n) = F−1diag{Fw0}Fĉ(n)

Use NLMS algorithm for transformed coefficients:

ĉ(n + 1) = ĉ(n) + µ
y(n)− ĉT(n) · enmodN

enmodN

see i

step-size parameter µ

unit vector ei =



0
···
1
···
0



0

i

N−1

NL
M
S

Idea: Transform h(n) (basis ei) to c(n) (basis wi) with respect to x(n)

mag
nitu

de

pha
se

+F·x(n)

mag
nitu

de

zero

+ F · s: zero-phase component

pha
se

cons
tant

+ F · p(n): const.-magn. component
x(n) periodic in N
→ only N mutually orthogonal
pi, i = 0, . . . , N − 1 exist.
with pnmodN = p(n) = Γ̆(n)p0

Energy: Ep = pT
0 p0

x(n) = F−1diag{Fs}Fp(n)

Goal: wT
i x(n) = 1 for i=nmodN

0 otherwise
To obtain basis wi:

wi = 1
Ep

F−1diag{Fs}−1Fpi

→ wi form non-orthogonal basis of RN

Output of system can be expressed as:

d(n) =
N − 1∑
i = 0

hi(n)eT
i x(n), hi coeff. to basis ei

=
N − 1∑
i = 0

ci(n)wT
i x(n), ci coeff. to basis wi

→ x(n) appears as unit impulse excitation in transform domain
Current output sample matches exactly one coefficient:
d(n) = cnmodN(n) respectively d(n) = Γ(n)c(n)

h(n) =
∑N − 1

i = 0
ci(n)wi = · · · = F−1diag{Fw0}FΓ(n)d(n)

equalization with snormalization
to Ep

’direction’ of pi

Al
te
rn
at
ive

Sy
ste

m
De

sc
rip

tio
n

change of basis

4 Inverse Cyclic Convolution (ICC)
Deconvolution in frequency domain by element-wise division:

ĥICC(n) = F−1 diag{Fx(n)}−1Fy(n)
∗ required to compensate

for mirroring of sequences
x(n) and y(n)

5 Equivalence of eNLMS and ICC

By alternative system description in 3 and 4 , equivalence for µ = 1
can be shown:

ĥµ=1
eNLMS(n) != ĥICC(n) → see paper

µ
=

1

For arbitrary step-sizes µ, eNLMS yields:

ĉ(n +N) = ĉ(n) + µ(Γ(n+N−1)y(n+N−1)− ĉ(n))
= (1− µ) · ĉ(n) + µ · (Γ(n+N−1)y(n+N−1))

ĥeNLMS(n +N) =(1− µ) · ĥeNLMS(n) + µ · ĥµ=1
eNLMS(n +N)

As ĥµ=1
eNLMS(n) = ĥICC(n) → recursive averaging can be applied to ICC

µ
ar
bi
tra

ry

Complexity is identical (see paper for detailed description)

6 Conclusion
ICC and eNLMS are mathematical identical
Bridged gap between ICC for static acoustic measurements and the eNLMS
algorithm for dynamic system identification and tracking

I Enables transfer of knowledge from both approaches:
– from ICC to eNLMS: regularization methods
– from eNLMS to ICC: dynamic tracking properties and step-size control
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