ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC
IN ACOUSTICALLY UNDER-RESOURCED SCENARIOS

Introduction

=9
Task: Robust automatic speech recognition of speech with background music 2%
= Applications like online 24/7 monitoring of broadcast media ?

Two scenarios, where we aim to achieve robust recognition:
1) Acoustically under-resourced: Small amount of labeled training utterances
(only 1 hour) + additional amount of non-labeled training utterances (20 hours)
2) Standard: Large amount of labeled training utterances (132 hours)
Three investigated techniques to achieve the goal:
1) Multi-condition training of acoustic models
2) Denoising autoencoders for feature enhancement
3) Joint training of both above mentioned techniques

For both scenarios all three techniques achieve improved performance compared to
baseline acoustic models trained on clean speech.

Improvements in under-resourced scenario:
= Using non-labeled data; autoencoder is trained to provide robust feature enhancement

= Using the small amount of available labeled data; the autoencoder is fine-tuned along
with acoustic model to provide robust recognition.

Training datasets AT

Training datasets:
1) Large - 132 hours of labeled czech speech
2) Small — 1 hour of labeled, subset of Large, under-resourced scenario
* Additional 20 hours of non-labeled data, easier to obtain than labeled
All distorted training sets created by augmentation:
= Partitioning of available speech dataset into four parts
= First part left undistorted
= Other parts: summation of speech and music; SNR 0,5 and 10 dB
Music dataset: 667 minutes of Electronic music
= Resembles background music in TV shows

Test datasets

Generated dataset: 13622 words, dictated in silence on colose-talk mic
= Augmentation using electronic music with SNR levels 10, 5, 0, -5 dB
= |[n total five instances for different SNR levels

Real-world dataset: 2222 words from local radio news
= Electronic music with approximate SNR 10 dB on the background

General acoustic model architecture

HMM-DNN architecture
= Underlying GMM context dependent, speaker independent
= Small dataset — 619 states, Large — 2219 states
Features
= 39 filter bank coefficients, 25 ms frames, 10 ms shift
= [nput vector: 11 consecutives frames, 5 preceding, 5 following current
= Normalization: Mean subtraction; floating window of 1 s.

Recognition engine

One-pass speech decoder with time-synchronous Viterbi search
We do not investigate the under-resourced scenario from linguistic point of view
Linguistic part: Lexicon: 550k entries (words and collocations)

= Newspaper language model: For simulated datasets

* Broadcast language model: For real-world datasets

* Bigram language model structure
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Investigated techniques

Multi-condition training
= Acoustic models have HMM-DNN architecture

1) FAM - Fully-connected deep neural network Acoustic Model
2) CAM - Convolutional deep neural network Acoustic Model
Autoencoder for removal of music from features
1) FAE - Fully connected autoencoder
2) CAE - Convolutional autoencoder
* Followed by FAM training on the processed data
Joint training of cascade CAE + FAM
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Experiments: Models trained on small dataset

Results stated as absolute improvements of accuracy
B Undistorted dataset: SCT baseline: 76.8% accuracy

= MCT and JMCT achive comparable performance to SCT

B Distorted generated datasets: Performance of SCT baseline deteriorates to 20.5% at 0 dB

= Most of the robust techniques achieve considerably higher accuracy

= FAE: Not beneficial when applied to the small dataset

= CAE: Significantly better results than FAE, improves over SCT by 5-14%

= MCT: Significantly improves over SCT by 14-23%, CAM/FAM comparable

= JMCT: Comparable in topology to CAM, better results, especially for low SNR

= Additional non-labeled data (20 hours): Improves performance of all aplicable

techniques, e.g., 1-4% for JCMT.

B Real-world dataset: Comparable to 10dB generated case, SCT performance deteriorates
less significantly, otherwise consistent with results above

* Multi-condition training using noisy data
B Baseline acoustic model
= Single-style training (SCT) using undistorted speech data

Multi-condition training ]

B FAM - Fully-connected deep neural network Acousitc Models 60 ||” i
= 5 feedforward fully-connected hidden layers; 768 units. >s50f -

B CAM - Convolutional deep neural network Acousitc Models g‘"’ ‘E:n:%-zm ]
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* Input: 11 feature maps, 39 x 1 in size, i.e. 11 consecutive feature vectors e, | | |

= First conv. layer: 105 maps 39 x 1, second conv. Layer: 157 maps 13 x 1 10_31')*) III _
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(Number in parentheses: amount of non-labeled data for autoencoders)

Experiments: Models trained on large dataset

B Undistorted dataset: SCT baseline: 84.9% accuracy
= All compared techniques achieve comparable performance

B Distorted generated datasets: Performance of SCT baseline deteriorates to 38.7% at O
dB

= All of the robust techniques achieve considerably higher accuracy
= FAE: The least beneficial technique, improves over SCT by 3-28%
= CAE: Better results than FAE, improves over SCT by 4-31%
= MCT: Significantly improves over SCT by 5-37%, CAM/FAM comparable on high SNR
= JMCT: Comparable in topology to CAM, improves over CAM by about 1%
B Real-world set: Comparable to 10dB generated scenario, consistent with results above

B Target: Senones (619 small dataset model, 2219 large dataset model)
B Training criterion: negative log-likelihood criterion

Fully-connected denoising autoencoder (FAE)

Input: 11 distorted feature frames
Architecture: Feedforward, four hidden layers, 768 units each
Target: True undistorted speech feature frame

Training criterion: Mean square error
= Sensitive to scaling, feature normalization to zero mean and unit variance

Convolutional denoising autoencoder (CAE)

B |nput: 11 feature maps 39 x 1, i.e., 11 consecutive feature vectors

B Architecture: Two conv. layers (105 maps 39x1 and 157 maps 13x1 )
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= 3 fully-connected layers (768 units)
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B Convolutional kernel: 5 x 1
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B Target: True undistorted speech feature frame
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B Training criterion: Mean square error
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Joint training of CAE and FAM (JCMT)

1) CAE is trained as described above, but:
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* Target: 11 consecutive frames of true clean speech ’ Clean 10 dB 5 dB 0dB 5 dB Real-world
. . SNR [dB]
* Architecture change: Single fully connected layer only .
Conclusions N

2) FAM is trained using data processed by CAE.
B Both training dataset sizes: All techniques improve accuracy compared to SCT

= Autoencoders: CAE is more beneficial than FAE

= Multi-condition training: CAM achieves higher accuracy compred to FAM

= Joint training: Topology comparable to CAM, better results (especially for small dataset)
B Small dataset: Smaller accuracy compared to large training dataset

= Additional non-labeled data: improve significantly autoencoder and JMCT performance

* Architecture change: Two fully connected layers only
3) Concatenation of CAE and FAM into single network
4) Fine-tunning of joined network using negative log-likelihood criterion; target: senones

B JCMT acoustic model is of the same size and topology as CAM.
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