
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC 
IN ACOUSTICALLY UNDER-RESOURCED SCENARIOS

Introduction
 Task: Robust automatic speech recognition of speech with background music

 Applications like online 24/7 monitoring of broadcast media
 Two scenarios, where we aim to achieve robust recognition:

1) Acoustically under-resourced: Small amount of labeled training utterances 

(only 1 hour) + additional amount of non-labeled training utterances (20 hours)

2) Standard: Large amount of labeled training utterances (132 hours)
 Three investigated techniques to achieve the goal: 

1) Multi-condition training of acoustic models

2) Denoising autoencoders for feature enhancement

3) Joint training of both above mentioned techniques
 For both scenarios all three techniques achieve improved performance compared to 

baseline acoustic models trained on clean speech.
 Improvements in under-resourced scenario:

 Using non-labeled data; autoencoder is trained to provide robust feature enhancement
 Using the small amount of available labeled data; the autoencoder is fine-tuned along 
with acoustic model to provide robust recognition.
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Training datasets
 Training datasets: 

1) Large - 132 hours of labeled czech speech

2) Small – 1 hour of labeled, subset of Large, under-resourced scenario 
● Additional 20 hours of non-labeled data, easier to obtain than labeled

 All distorted training sets created by augmentation:
 Partitioning of available speech dataset into four parts
 First part left undistorted
 Other parts: summation of speech and music; SNR 0,5 and 10 dB

 Music dataset: 667 minutes of Electronic music
 Resembles background music in TV shows

Investigated techniques
 Multi-condition training

 Acoustic models have HMM-DNN architecture

1) FAM - Fully-connected deep neural network Acoustic Model

2) CAM - Convolutional deep neural network Acoustic Model

 Autoencoder for removal of music from features

1) FAE - Fully connected autoencoder

2) CAE - Convolutional autoencoder
●  Followed by FAM training on the processed data

 Joint training of cascade CAE + FAM
● Multi-condition training using noisy data

 Baseline acoustic model 
 Single-style training (SCT) using undistorted speech data

General acoustic model architecture
 HMM-DNN architecture

 Underlying GMM context dependent, speaker independent
 Small dataset – 619 states, Large – 2219 states

 Features
 39 filter bank coefficients, 25 ms frames, 10 ms shift
 Input vector: 11 consecutives frames, 5 preceding, 5 following current
 Normalization: Mean subtraction; floating window of 1 s.

Multi-condition training
 FAM – Fully-connected deep neural network Acousitc Models

 5 feedforward fully-connected hidden layers; 768 units.

 CAM – Convolutional deep neural network Acousitc Models
● 2 convolutional, 3 fully-connected layers (768 units)
● Input: 11 feature maps, 39 x 1 in size, i.e. 11 consecutive feature vectors
 First conv. layer: 105 maps 39 x 1, second conv. Layer: 157 maps 13 x 1

 Target: Senones (619 small dataset model, 2219 large dataset model)

 Training criterion: negative log-likelihood criterion

Fully-connected denoising autoencoder (FAE)
 Input: 11 distorted feature frames

 Architecture: Feedforward, four hidden layers, 768 units each

 Target: True undistorted speech feature frame

 Training criterion: Mean square error
 Sensitive to scaling, feature normalization to zero mean and unit variance

Convolutional denoising autoencoder (CAE)
 Input: 11 feature maps 39 x 1, i.e., 11 consecutive feature vectors

 Architecture: Two conv. layers (105 maps 39x1 and 157 maps 13x1 )
 3 fully-connected layers (768 units)

 Convolutional kernel: 5 x 1

 Target: True undistorted speech feature frame

 Training criterion: Mean square error

Joint training of CAE and FAM (JCMT)
1) CAE is trained as described above, but:

● Target: 11 consecutive frames of true clean speech
● Architecture change: Single fully connected layer only

2) FAM is trained using data processed by CAE.
● Architecture change: Two fully connected layers only

3) Concatenation of CAE and FAM into single network

4) Fine-tunning of joined network using negative log-likelihood criterion; target: senones

JCMT acoustic model is of the same size and topology as CAM.

Test datasets
 Generated dataset:13622 words, dictated in silence on colose-talk mic

 Augmentation using electronic music with SNR levels 10, 5, 0, -5 dB 
 In total five instances for different SNR levels 

 Real-world dataset: 2222 words from local radio news
 Electronic music with approximate SNR 10 dB on the background

Recognition engine
 One-pass speech decoder with time-synchronous Viterbi search
 We do not investigate the under-resourced scenario from linguistic point of view
 Linguistic part: Lexicon: 550k entries (words and collocations)

 Newspaper language model: For simulated datasets
● Broadcast language model: For real-world datasets
● Bigram language model structure

Experiments: Models trained on small dataset
Results stated as absolute improvements of accuracy
 Undistorted dataset: SCT baseline: 76.8% accuracy

 MCT and JMCT achive comparable performance to SCT
 Distorted generated datasets: Performance of SCT baseline deteriorates to 20.5% at 0 dB

 Most of the robust techniques achieve considerably higher accuracy
 FAE: Not beneficial when applied to the small dataset
 CAE: Significantly better results than FAE, improves over SCT by 5-14%
 MCT: Significantly improves over SCT by 14-23%, CAM/FAM comparable
 JMCT: Comparable in topology to CAM, better results, especially for low SNR
 Additional non-labeled data (20 hours): Improves performance of all aplicable 
techniques, e.g., 1-4% for JCMT.

 Real-world dataset: Comparable to 10dB  generated case, SCT performance deteriorates 
less significantly, otherwise consistent with results above

Experiments: Models trained on large dataset
 Undistorted dataset: SCT baseline: 84.9% accuracy

 All compared techniques achieve comparable performance
 Distorted generated datasets: Performance of SCT baseline deteriorates to 38.7% at 0 

dB
 All of the robust techniques achieve considerably higher accuracy
 FAE: The least beneficial technique, improves over SCT by 3-28%
 CAE: Better results than FAE, improves over SCT by 4-31%
 MCT: Significantly improves over SCT by 5-37%, CAM/FAM comparable on high SNR
 JMCT: Comparable in topology to CAM, improves over CAM by about 1%

 Real-world set: Comparable to 10dB generated scenario, consistent with results above

Conclusions
Both training dataset sizes: All techniques improve accuracy compared to SCT

 Autoencoders: CAE is more beneficial than FAE
 Multi-condition training: CAM achieves higher accuracy compred to FAM
 Joint training: Topology comparable to CAM, better results (especially for small dataset)

Small dataset: Smaller accuracy compared to large training dataset
 Additional non-labeled data: improve significantly autoencoder and JMCT performance
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(Number in parentheses: amount of non-labeled data for autoencoders)
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