ATTENTION-BASED MODELS FOR TEXT-DEPENDENT SPEAKER VERIFICATION

Speaker Identification

Problem and Application

- Speaker recognition can be used to provide secured personalized interactions to systems controlled by voice.
- Global-password text dependent speaker recognition aims to distinguish among speakers using fixed phrases like "Ok Google" or "Hey Google".
- Since 2014 end2end neural network architectures for speaker recognition have shown to outperform traditional approaches. [Variani, Ehsan, et al. "Deep neural networks for small footprint text-dependent speaker verification." Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.]
- This work is a study over alternative attention mechanisms to further improve the standard end2end architectures for text-dependent speaker recognition.

End to End Architecture

Fig. We use LSTM as audio feature extractor.

- For each training step, a tuple of one evaluation utterance and N enrollment utterances is fed into our LSTM network Features are extracted using **log-mel-filterbank** energies from a fixed-length segment →We use LSTM model to calculate the **d-vector**. We <u>average</u> the d-vectors of the enrollment utterances
- The similarity of the utterances are defined using the **cosine similarity** function of their d-vectors

Baseline LSTM Model

- → We use 3-Layer LSTM in our baseline LSTM model
- ➡ Dimension of each layer 128
- Projection layer in each layer with dimension 64
- On top of the LSTM layers, a linear layer of dimension 64
- The acoustic parametrization consists of 40-dimensional log-mel-filterbank coefficients computed over a window of 25ms with 15ms of overlap

- Silence and background noise are NOT being well captured in this system
- The phonemes are usually surrounded by frames of silence and background noise. Ideally, the speaker embedding should be built only using the frames corresponding to phonemes.
- Thus, we propose to use an attention layer as a soft mechanism to emphasize the most relevant elements of the input sequence.

The 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 15 - 20, 2018, Calgary, Alberta, Canada

Basic Idea

Motivation: A weighted combination of all hidden layer outputs to

- In our basic attention model computation of the weights is done on the second secon
- We use a scoring function $e_t = f(h_t)$ to compute weights based
- ⇒Then we get the **normalized weights** using $\alpha_t = \frac{\exp(e_t)}{\sum_j \exp(e_j)}$
- ➡Finally, we compute a **weighted combination** of the weights as, $\omega = \sum \alpha_t h_t$ where, $\sum \alpha_t = 1$

Different Scoring Functions

➡We experimented using different types of scoring functions for computation of weights of the attention layer. ➡Bias only attention - It does <u>NOT</u> depend on the LSTM output and is scalar →Linear and non-linear attention - We call attention linear and non-linear based on the function used to calculate the attention Shared-parameters attention - We experimented using shared parameters through all time steps for linear and non linear attentions

Linear

Bias only

 $e_t = f_{BO}(h_t) = b_t$

 $e_t = f_L(h_t) = w_t^T h_t + b_t$

Shared-parameter linear

 $\alpha_1 \alpha_2$

●→●→ ...-

Attention Layer Variants

→We introduce two variants of the attention layer - cross-layer attention and divided-layer attention

- **Cross-layer attention**
- →Motivation Using same layer for weight computation and dvector computation is <u>NOT</u> very **informative**
- →We calculate weights from an intermediate LSTM layer
- We change our <u>scoring function</u> to $e_t = f(h'_t)$ where, h'_t is an intermediate LSTM layer (e.g. second-to-last layer)
- →We calculate the <u>d-vector</u> from the weighted average of the

 $\omega = \sum \alpha_t h_t$

last layer, h_t as before

Weights Pooling Idea and Variants

Fig. LSTM model with cross-layer attention

➡Motivation - To make the weights sparse. Sparse weights can focus more on the most important parts with temporal variation in speech

 \Rightarrow We used two variants for the weight pooling idea in our design →Sliding window maxpooling - We run a sliding window on the weights. ➡For each window, only keep the **largest value** and <u>set others to 0</u>. ➡Global top-K maxpooling - We only keep the largest K values in the weights, and set all other values to 0.

F A Rezaur Rahman Chowdhury*, Quan Wang, Ignacio Lopez Moreno, Li Wan Washington State University*, Google Inc., USA fchowdhu@eecs.wsu.edu {quanw, elnota, liwan}@google.com

earn the more important parts of the input the final hidden layer outputs on the hidden status		
The final hidden layer outputs on the hidden status $LSTM = \begin{bmatrix} u_1 & u_2 & u_T \\ u_1 & u_1 & u_T \\ u_1 & u_T & u_T \\ u_1$	learn the more important parts o	f the input
on the hidden status $LSTM = \begin{bmatrix} n_1 & n_2 & n_T \\ utputs \end{bmatrix}$ $LSTM = \begin{bmatrix} n_1 & n_2 & n_T \\ LSTM \end{bmatrix}$ $LSTM = \begin{bmatrix} n_1 & n_2 & n_T \\ LSTM \end{bmatrix}$ $LSTM = \begin{bmatrix} n_1 & n_2 & n_T \\ LSTM \end{bmatrix}$ $LSTM = \begin{bmatrix} n_1 & n_2 & n_T \\ LSTM \end{bmatrix}$ Features $\begin{bmatrix} n_1 & n_2 & n_T \\ LSTM \end{bmatrix}$ Fig. Our basic LSTM model with attention layer	ne final hidden layer outputs	Normalized weights
LSTM $Input Features \begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_T \end{bmatrix}$ Fig. Our basic LSTM model with attention layer	on the hidden status	$\begin{array}{c c} n_1 & n_2 & n_T \\ \hline \\ \text{LSTM} \\ \text{outputs} \end{array}$
$\begin{aligned} & \text{Input}_{\text{Features}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ \hline x_1 & x_2 & x_T \\ \hline & Fig. \text{ Our basic LSTM model with attention layer} \end{aligned}$		LSTM
Fig. Our basic LSTM model with attention layer		Input $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ Features \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ x_1 & x_2 & x_T \end{bmatrix}$
		Fig. Our basic LSTM model with attention layer

- Non-linear
- Shared-parameter non-linear
- $e_t = f_{SL}(h_t) = w^T h_t + b$ $e_t = f_{NL}(h_t) = v_t^T \tanh(W_t h_t + b_t)$ $e_t = f_{SNL}(h_t) = v^T \tanh(W h_t + b_t)$

 - **Divided-layer attention** →Motivation - Using independent layers for weight computation and d-vector computation →We double the size of the final LSTM layer and then divide it into two equal sized part-a h_t^a and part-b h_t^b →We compute the <u>weights</u> from **part-b** by $\begin{array}{c|c} \alpha_1 & \alpha_2 & \alpha_T \\ \hline \bullet \bullet \bullet \bullet & \cdots \bullet \end{array}$ the scoring function $e_t = f(h_t^b)$
 - →We calculate the <u>d-vector</u>
 - from the weighted average
 - from **part-a**, $\omega = \sum \alpha_t h_t^a$

Fig. LSTM model with divided-layer attention

Last layer _ outputs

Part b

.....

No pooling Sliding window maxpooling window 1 window 2 Global top-*K* maxpooling (*K*=5)

IEEE

Fig. Different pooling methods on attention weights. The t th pixel corresponds to the weight α_t and a brighter intensity means a larger value of the weight

Signal Processing Society

Experiments

Training set

- Anonymized voice queries
- 150M utterances, 630K
- speakers
- Mixture of "OK Google" and "Hey Google"

Results

Test data Enroll → Verify	Non- attention Baseline	Basic Attention				
		f _{BO}	f_L	f_{SL}	f_{NL}	<i>f_{snl}</i>
OK Google →OK Google	0.88	0.85	0.81	0.8	0.79	0.78
OK Google \rightarrow Hey Google	2.77	2.97	2.74	2.75	2.69	2.66
Hey Google $ ightarrow$ OK Google	2.19	2.3	2.28	2.23	2.14	2.08
Hey Google $ ightarrow$ Hey Google	1.05	1.04	1.03	1.03	1.00	1.01
Average	1.72	1.79	1.72	1.70	1.66	1.63

Table. Evaluation EER(%): Non-attention baseline model vs. basic attention layer using different scoring functions.

- scoring functions
- others.
- fixing the best scoring function from previous experiment
- experimen⁻
- variants

Attention Visualization

- We visualize the attention weights of a training batch for different pooling methods.
- structure of the keywords
- When we apply sliding window maxpooling or global top-K the **near-end** than at the beginning, thus is **more confident** to produce the d-vector

Datasets and Evaluation

Testing set

- Manual collection of 665 speakers
- For each "OK Google" and "Hey Google" Two
- enrollment sets, **Two** verification sets
- Enrollment set: ~4.5 utterances per speaker; Verification set: ~10 utterances per speaker.

Evaluation

• We report the speaker verification Equal Error Rate (EER) on the four combinations of enrollment set and verification set

Cross-layer

0.81

2.61

2.03

0.97

Divided-laye

0.75

2.44

2.07

0.99

1.56

Average 1.61 1.63 Table.Evaluation EER(%): Basic attention laver vs. variants - all f_{SNL} as scoring function using

0.78

2.66

2.08

 $OK \rightarrow OK$

 $OK \rightarrow Hey$

Hey \rightarrow OK

Hey \rightarrow Hey

First, we compare the baseline model with basic attention layer using **different**

➡Performance wise non-linear with shared parameter is better than

→We compare basic attention with cross-layer and divided-layer attentions

Performance wise divided-layer is better than other two variants

→We compare **different pooling strategies** fixing the best setting from previous

Performance wise sliding window maxpooling better than other two

Test data	No-pooling	Sliding window	Тор-К					
ок →ок	0.75	0.72	0.72					
ОК → Неу	2.44	2.37	2.63					
Hey → OK	2.07	1.88	1.99					
Hey \rightarrow Hey	0.99	0.95	0.94					
Average	1.56	1.48	1.57					

Table. Evaluation EER(%): Different pooling methods for attention weights - all using f_{SNL} and divided-layer

→ Interesting observation - when there's no pooling, we see a clear 4-strand or 3-strand pattern in the <u>batch</u>. This pattern corresponds to the "O-kay-Goo-gle" <u>4-phoneme</u> or "Hey-Goo-gle" <u>3-phoneme</u>

maxpooling, the attention weights are much larger at the near-end of the utterance, The LSTM has accumulated more information at

(a) No pooling

(b) Sliding window

(c) Global top-K maxpooling

Fig. Visualized attention weights for different pooling methods. In each image, x-axis is time, and y-axis is attention weights (brighter intensity is larger weight) for different utterances in a training batch. (a) No pooling; (b) Sliding window maxpooling, where window size is 10, and step is 5; (c) Global top-K maxpooling, where K = 5.

