
➡Motivation - To make the weights sparse. Sparse weights can focus more 
on the most important parts with temporal variation in speech

➡We used two variants for the weight pooling idea in our design
➡Sliding window maxpooling - We run a sliding window on the weights. 

➡For each window, only keep the largest value and set others to 0.
➡Global top-K maxpooling - We only keep the largest K values in the 

weights, and set all other values to 0.

➡We introduce two variants of the attention layer - cross-layer attention and divided-layer attention

➡Motivation - Using independent layers for weight computation 

and d-vector computation
➡We double the size of the final LSTM layer and then divide it 

into two equal sized part-a       and part-b 
➡We compute the weights from part-b by

   the scoring function 
➡We calculate the d-vector

   from the weighted average
   from part-a, 

  

➡Motivation - Using same layer for weight computation and d-

vector computation is NOT very informative
➡We calculate weights from an intermediate LSTM layer
➡We change our scoring function to       where,      is an 

intermediate LSTM layer (e.g. second-to-last layer)
➡We calculate the d-vector from the
   weighted average of the

   last layer,       as before
  

  

➡We experimented using different types of scoring functions for computation of weights of the attention layer.
➡Bias only attention - It does NOT depend on the LSTM output and is scalar
➡Linear and non-linear attention - We call attention linear and non-linear based on the function used to calculate the attention
➡Shared-parameters attention - We experimented using shared parameters through all time steps for linear and non linear attentions

➡Motivation: A weighted combination of all hidden layer outputs to learn the more important parts of the input

➡In our basic attention model computation of the weights is done on the final hidden layer outputs

➡We use a scoring function                     to compute weights based on the hidden status

➡Then we get the normalized weights using

➡Finally we compute a weighted combination of the weights  as,
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➡Speaker recognition can be used to provide secured personalized interactions to systems controlled 
by voice.

➡Global-password text dependent speaker recognition aims to distinguish among speakers using fixed 
phrases like "Ok Google" or "Hey Google".

➡Since 2014 end2end neural network architectures for speaker recognition have shown to outperform 
traditional approaches. [Variani, Ehsan, et al. "Deep neural networks for small footprint text-dependent speaker verification." Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.]

➡This work is a study over alternative attention mechanisms to further improve the standard end2end 
architectures for text-dependent speaker recognition. 

Fig. Our basic LSTM model with attention layer
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Fig. LSTM model with cross-layer attention
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Fig. LSTM model with divided-layer attention

Fig. Different pooling methods on attention weights. The t th pixel corresponds 
to the weight       and a brighter intensity means a larger value of the weight!"

Table. Evaluation EER(%): Non-attention baseline model vs. basic attention layer using different 
scoring functions.

Table.Evaluation EER(%): Basic attention layer vs. variants - all 
using             as scoring function

Table. Evaluation EER(%): Different pooling methods for attention 
weights - all using            and divided-layer

➡First, we compare the baseline model with basic attention layer using different 
scoring functions

➡Performance wise non-linear with shared parameter is better than 
others.

➡We compare basic attention with cross-layer and divided-layer attentions 
fixing the best scoring function from previous experiment

➡Performance wise divided-layer is better than other two variants

➡We compare different pooling strategies fixing the best setting from previous 
experiment

➡Performance wise sliding window maxpooling better than other two 
variants

Fig. Visualized attention weights for different pooling methods. In each image, x-axis is 
time, and y-axis is attention weights (brighter intensity is larger weight) for different 

utterances in a training batch. (a) No pooling; (b) Sliding window maxpooling, where 
window size is 10, and step is 5; (c) Global top-K maxpooling, where K = 5.

➡ We visualize the attention weights of a training batch for different 

pooling methods. 
➡ Interesting observation -  when there’s no pooling, we see a clear 

4-strand or 3-strand pattern in the batch. This pattern corresponds 
to the “O-kay-Goo-gle” 4-phoneme or “Hey-Goo-gle” 3-phoneme 

structure of the keywords
➡ When we apply sliding window maxpooling or global top-K 

maxpooling, the attention weights are much larger at the near-end 
of the utterance, The LSTM has accumulated more information at 

the near-end than at the beginning, thus is more confident to 
produce the d-vector
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Training set

• Anonymized voice queries
• 150M utterances, 630K 

speakers
• Mixture of “OK Google” and 

“Hey Google”

Testing set

• Manual collection of 665 speakers
• For each “OK Google” and “Hey Google” - Two 

enrollment sets, Two verification sets
• Enrollment set: ~4.5 utterances per speaker; 

Verification set: ~10 utterances per speaker.

Evaluation

• We report the speaker 
verification Equal Error Rate 
(EER) on the four combinations 
of enrollment set and verification 
set.

➡For each training step, a tuple of one evaluation utterance and N enrollment utterances is fed into our LSTM network
➡Features are extracted using log-mel-filterbank energies from a fixed-length segment 
➡We use LSTM model to calculate the d-vector. We average the d-vectors of the enrollment utterances
➡The similarity of the utterances are defined using the cosine similarity function of their d-vectors

Fig. Our baseline end-to-end 
training architecture

➡ We use 3-Layer LSTM in our baseline LSTM model
➡ Dimension of each layer - 128  
➡ Projection layer in each layer with dimension - 64
➡ On top of the LSTM layers, a linear layer of dimension - 64
➡ The acoustic parametrization consists of 40-dimensional log-mel-filterbank coefficients 

computed over a window of 25ms with 15ms of overlap

➡ Problems - 
➡ Silence and background noise are NOT being well captured in this system 
➡ The phonemes are usually surrounded by frames of silence and background noise. 

Ideally, the speaker embedding should be built only using the frames corresponding to 
phonemes.

➡ Thus, we propose to use an attention layer as a soft mechanism to emphasize the most 
relevant elements of the input sequence.
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OK	Google àOK	Google 0.88 0.85 0.81 0.8 0.79 0.78
OK	Google	à Hey	Google 2.77 2.97 2.74 2.75 2.69 2.66
Hey	Googleà OK	Google 2.19 2.3 2.28 2.23 2.14 2.08
Hey	Googleà Hey	Google 1.05 1.04 1.03 1.03 1.00 1.01

Average 1.72 1.79 1.72 1.70 1.66 1.63
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Test	data Basic Cross-layer Divided-layer

OK	àOK 0.78 0.81 0.75
OK	à Hey 2.66 2.61 2.44
Hey	àOK 2.08 2.03 2.07
Hey	à Hey 1.01 0.97 0.99
Average 1.63 1.61 1.56
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Test	data No-pooling Sliding	window Top-K

OK	àOK 0.75 0.72 0.72

OK	à	Hey 2.44 2.37 2.63

Hey	à	OK 2.07 1.88 1.99

Hey	à	Hey 0.99 0.95 0.94

Average 1.56 1.48 1.57
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Fig. Tuple E2E loss: Speaker verification as a binary classification 
problem. Fig. We use LSTM as audio feature extractor. 

Fig. LSTM-based d-vector baseline
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