

Problem

We are given a time series that contains a sequence of patterns, and a theoretical model (the "blueprint") that lists the expected locations of these patterns (start/end in mm, seconds, ...).

The localization problem consists in estimating the precise (start and end) locations of each of the patterns in the time series.

- Example 1: Audio-to-score alignment [1].
- Example 2: Aligning a sensor measurement of a 1D structure to its known blueprint (e.g. in industrial environments). Illustration:

- In the literature, this localization problem is solved through alignment, typically by using Dynamic Time Warping (see bottom box).
- \blacktriangleright But alignment techniques require 2 time series \rightarrow the second time series is obtained by *synthesis* based on the model.
- \blacktriangleright An accurate synthesis technique is key! \rightarrow requires *domain knowledge*.
- True patterns may include variations that worsen alignment (e.g. "G").

Main idea

Use supervised machine learning to improve the alignment by learning transformations for the true and the synthesized time series into a space in which they are more similar.

- The optimal transformation is learned by Canonical Correlation Analysis (CCA) (see box to the right).
- CCA can compensate for the shortcomings of a generic synthesis.

Dynamic Time Warping

Dynamic Time Warping (DTW) is the de-facto standard technique for aligning time series [2]. Given two time series, DTW seeks the warping path that optimally aligns them.

Steven Van Vaerenbergh*, Ignacio Santamaría*, Víctor Elvira[†], Matteo Salvatori^{*}

Proposed Machine Learning Framework

Training stage:

Input: A time series and the corresponding *aligned* model (labeled by a domain expert).

- 1. The model is synthesized into a time series;
- 2. Both time series may optionally undergo a fixed transformation;
- 3. CCA is performed.

Output: The coefficients of the 2 CCA transformations.

Testing stage:

Input: A time series and the corresponding *unaligned* model.

- 1. Same preprocessing as in the training stage;
- 2. Both time series are mapped into the latent space.
- 3. DTW is applied.

Output: Alignment solution for the time series and the model.

Canonical Correlation Analysis

Given two multidimensional random variables x and y, canonical correlation analysis (CCA) seeks a pair of optimal linear transformations such that the transformed variables are maximally correlated [3].

max correlation

Pattern Localization in Time Series through Signal-To-Model Alignment in Latent Space * University of Cantabria, Santander, Spain; † IMT Lille Douai CRISTAL (UMR 9189), Lille, France; * Tecnatom S.A., Madrid, Spain

Pattern localization for non-destructive testing of heat generator tubes in nuclear power plants (cf. initial illustration). Blueprint (model) is available. **Experiment 1**: Training with a single time series (7 patterns).

Synthesis through replication.

- space (learned by CCA), then aligned by DTW.

[1] John Thickstun, Zaid Harchaoui, and Sham Kakade Learning features of music from scratch. In ICLR, 2017.

Experiments

Experiment 2: Influence of different rates of pilgrim noise (simulated).

Conclusions

Pattern localization in a time series for which a model is available. True and synthesized time series are mapped into an optimal latent

Results are better and more robust compared to DTW only. ► Uses little domain-specific knowledge – applicable in many contexts.

References

[2] Taras K. Vintsyuk. Speech discrimination by dynamic programming. *Cybernetics*, 4(1):52–57, 1968.

[3] Harold Hotelling.

Relations between two sets of variates. *Biometrika*, 28(3/4):321–377, 1936.