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Problem

We are given a time series that contains a sequence of patterns, and a
theoretical model (the “blueprint”) that lists the expected locations of
these patterns (start/end in mm, seconds, . . . ).

The localization problem consists in estimating the precise (start
and end) locations of each of the patterns in the time series.

I Example 1: Audio-to-score alignment [1].

I Example 2: Aligning a sensor measurement of a 1D structure to its
known blueprint (e.g. in industrial environments). Illustration:

I In the literature, this localization problem is solved through alignment,
typically by using Dynamic Time Warping (see bottom box).

I But alignment techniques require 2 time series → the second time
series is obtained by synthesis based on the model.

I An accurate synthesis technique is key! → requires domain knowledge.

I True patterns may include variations that worsen alignment (e.g. “G”).

Main idea

Use supervised machine learning to improve the alignment by
learning transformations for the true and the synthesized time
series into a space in which they are more similar.

I The optimal transformation is learned by Canonical Correlation
Analysis (CCA) (see box to the right).

I CCA can compensate for the shortcomings of a generic synthesis.

Dynamic Time Warping

Dynamic Time Warping (DTW) is the de-facto standard technique for
aligning time series [2]. Given two time series, DTW seeks the warping
path that optimally aligns them.
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Proposed Machine Learning Framework

Training stage:
Input: A time series and the corresponding aligned model (labeled by a
domain expert).

1. The model is synthesized into a time series;

2. Both time series may optionally undergo a fixed transformation;

3. CCA is performed.

Output: The coefficients of the 2 CCA transformations.
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Testing stage:
Input: A time series and the corresponding unaligned model.

1. Same preprocessing as in the training stage;

2. Both time series are mapped into the latent space.

3. DTW is applied.

Output: Alignment solution for the time series and the model.

Preprocessing Testing
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Canonical Correlation Analysis

Given two multidimensional random variables x and y , canonical correlation
analysis (CCA) seeks a pair of optimal linear transformations such that the
transformed variables are maximally correlated [3].
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Experiments

Pattern localization for non-destructive testing of heat generator tubes in
nuclear power plants (cf. initial illustration). Blueprint (model) is available.

Experiment 1: Training with a single time series (7 patterns).
Synthesis through replication.
Function f : time-embedding of 20 past and 20 future samples.
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Experiment 2: Influence of different rates of pilgrim noise (simulated).

Rate of pilgrim noise
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Conclusions

I Pattern localization in a time series for which a model is available.

I True and synthesized time series are mapped into an optimal latent
space (learned by CCA), then aligned by DTW.

I Results are better and more robust compared to DTW only.

I Uses little domain-specific knowledge – applicable in many contexts.
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