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Background: The main flow of current studies utilized convolutional neural network (CNN) directly on spectrograms to extract features, and

employed the state-of-the-art models such as the bidirectional long short term memory (BLSTM).

Problems: ① those features did not fully utilize priori knowledge;

② BLSTM is not efficient enough for training small-scale datasets such as the emotional datasets.

Solutions: ① propose a feature fusion method to combine CNN-based features and heuristic-based discriminative features;

② utilize extreme learning machine (ELM) instead of BLSTM to solve the second problem.

Results: our method leads to 40% relative error reduction in F1-score compared to CNN-BLSTM on EmoDB.
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Fig. 1. Baseline: CNN-BLSTM

 Method: ELM

 There are great 

improvements when 

using bottleneck features.

 It is necessity to extract 

bottleneck features.

Tab. 2. Comparison of different speech 

emotion recognition models
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Fig. 2. Our method: Feature Fusion Method based on ELM 

Problems:

(a) Features: it does not utilize knowledge-based heuristic features

(such as MFCC, pitch, energy, etc.)；
(b) Models: the framework of BLSTM is complicated, and it needs lots

of training data.
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Solutions:

(a) propose a feature fusion method that combines CNN-based features

and heuristic-based features；
(b) use ELM instead of BLSTM to distinguish emotions.
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Tab. 1. F1 (%) comparison of bottleneck features and heuristic features. 

 We proposed a feature fusion method with ELM, which combines

CNN-based features and heuristic-based discriminative features.

 It is found that knowledge-based heuristic features have significant

contribution although automatically extracted features were good.

 The ELM is suitable for small-scale database training for speech

emotion recognition.

Future works:

• Taking experiments on a large-scale dataset.

• Taking strict selection about heuristic features.

Validation of Bottleneck Features

Emo Heuristic F. Bottleneck F. Change

Fea 67.74 66.67 -1.07

Dis 79.07 80.43 +1.36

Hap 60.94 68.66 +7.72

Bor 73.94 76.02 +2.08

Neu 69.82 83.87 +14.05

Sad 84.03 82.26 -1.77

Ang 80.29 85.28 +4.99

Ave 73.69 77.60 +3.91

• Dataset: EmoDB consisting of

535 utterances.

• The structure of CNN

Convolutional layer 1:

Convolutional layer 2:

Two pooling layers:

Full connected layer: 1024 units

Dropout layer: 0.5 factor.
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Model P (%) R (%) F1 (%)

DNN-ELM 85.55 84.09 84.56

CNN-BLSTM 89.41 86.66 87.49

CNN-BLSTM

(+ heuristic features)
90.22 89.73 89.68

CNN-ELM 92.64 90.83 91.47

CNN-ELM

(+ heuristic features)
93.30 91.97 92.50

Fig. 4. F1 results for each emotion. 

Fig. 5. Confusion matrices of CNN-BLSTM and our method. 

• CNN-ELM performs

better than CNN-BLSTM

in this task.

• CNN-BLSTM(+heuristic

features) performs better

than CNN-BLSTM alone.

• Our method outperforms

CNN-BLSTM by 40%

relative error reduction.

• CNN-ELM(+ heuristic

features) achieves best

performance in most

cases except fear, disgust

and sadness.

• The reason might be that

the database has less data

of disgust and sadness.

(a) CNN-BLSTM (a) Our method

• Abscissa: detected labels • Ordinate: actual labels
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Fig. 3. Emotion distribution. 


