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Introduction r : rate of information flow in the network
o, [ : required probabilities of false alarm and misdetection
* Sequential detectors can significantly reduce the average number of samples compared fy.m» 0, ,, : mean and variance of the log-likelihood ratio under H,,

to fixed sample size tests with the same reliability.

* Acceptance test at each node with decision rule:

* Sequential detectors for multiple hypotheses can solve non-binary decision problems.

 Fully distributed methods exploit the inherent scalability, fault-tolerance, and absence

of a single point of failure in sensor networks.

 Distributional uncertainties in real-world applications call for robust solutions.

if 3m e {1,..., M} such that
SEt)y >~ Vne{l,...,M}\{m}: accept H,,
else: continue sampling,

Contributions

* We propose the Consensus + Innovations Matrix Sequential Probability Ratio Test
(CZMSPRT) as a sequential multiple hypothesis test for distributed sensor networks.

* We provide an accurate prediction of the average stopping time of the CZMSPRT.

* We robustify the CZMSPRT using least favorable densities (LFDs).

e We validate the performance of the CZMSPRT and the robust LEFD-CZMSPRT in a shift-

In-variance test.

* We analyze the impact of network size and connectivity on the performance.

tics have crossed the threshold.

* Expected stopping time of the CZMSPRT: slowest one-sided pairwise test

1 U
E, |[T] ~ max 8 onn) ' )

Problem Formulation

D(pm|pn) : Kullback-Leibler divergence between p,, and p,

* Detect the presence of one out of M signals x,,(t) with different variances o

non-Gaussian environment with a distributed sensor network.

= Shift-in-variance test between M hypotheses under s-contamination:

in a

The test is stopped and H,, is accepted as soon as all corresponding pairwise test statis-

The Least-Favorable-Density-CZMSPRT (LFD-CZMSPRT)

Least Favorable Densities (LFDs)
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Results: Detecting the presence of one out of ) signals
Setup

CIMSPRT: Ratio of

e four networks of different size and connectivity correct detection

—

e M = 4 signals with variances o,, € {1,2,4,16} o
* measurement noise: h,, = N(0,81), ¢ € [0,0.3] 0% IS
e probability of false alarm: «,,,,, = 0.01 go.sw
* 1 000 Monte-Carlo runs S04
CZIMSPRT o
0 1 2 3 4

hypothesis

 accurate prediction of the average stopping time

CIMSPRT: Average
stopping time

* higher variance leads to shorter testing time

* higher network connectivity drastically reduces average

stopping time = good scalability ;20! T
. . [ INWC
* network size only marginally effects performance g 100/ WD
é g0l -expectedi

LFD-CZMSPRT S . Il
e accurate detection results up to 10 % contamination s 40

(20 % under H,) irrespective of network size and con- 20/

nectiVity 0 1 2 3 4

hypothesis

* network connectivity impacts average stopping time

Hon : x(t) ~ N(0,02), Pt = (1 —e)p! + ehy,

LFD-CZMSPRT: Ratio of correct detection and average stopping time

* LFDs of Huber’s clipped likelihood ratio test for some c,,, c,, > 0 [4]

o
o™
o
®

o
o)

P : probability density function of the contaminating noise under H,,

N (0, 0%) : zero-mean normal distribution with variance o

P, PO pMt : true, nominal and contaminated probability density function under H,,
£ : contamination factor

4m = HlaX {Cmpgw (1 _ 6)]92%}

(n = Hax {Cnpf(r)m (1 _ g)p%} @

The Consensus + Innovations Matrix SPRT (CZMSPRT)

Robustifying the CZMSPRT

 Calculation of the log-likelihood ratio of node k at time instant ¢ and the corresponding
test statistic for the hypothesis pair H,,,, H,:

N (1) = log (pm(yk(t))>

Pn (yk (t))

N, : open neighborhood of node &

LEN]

wy; - coefficient for weighting the information of node [ at node &

yi(t)

: measurement of node £k at time instant ¢

 Decision thresholds for the hypothesis pair H,,,, H,, [1, 2, 3] :

4(Nr? + l)Ugjm
(N g m

Vo =

A(Nr> 4 1)0,,
(N gy

[
Vinn =

N N%,m

log (%) +tlog | 1—e 2 Hoiy

log (g) + log

B N N%,n

1 — o 2N2D)o7,

Sin() = > wuSh,t = 1)+ Y wynl,,(t)

LEN]

* We replace the log-likelihood ratio in (1) by the clipped log-likelihood ratios of the LFDs
to obtain a robust test statistic:

(1)
k.clipped/;\ _ dm (yk (t> )
n (1) = log( (5)
m Gn(Yi(t))
Sample networks: randomly generated simple, connected and undirected graphs

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x—coordinate x—coordinate

x—coordinate x—coordinate

o
o))
o
o))
o
o))
o
o))

[——NW A
= NW B
|~—NwW C
--NW D
---q=0.01

[~—NW A
= NW B
|~—NwW C
-=-NW D
-~ = 0.01

[~~NW A
-=NW B
|~=NW C
-=-NW D
-~ = 0.01

[—-NW A
= NW B
|——NW C
-=-NW D
-~ = 0.01

o
~
o
o
o
~
o
o

ratci)o of correct detection
N

ratio of correct detection

ratio of correct detection

ratio of correct detection

o
N
o
N
o
N

% ® 0

% ® 0

‘ ® ‘ ® ® ‘ ® ‘ ‘ ®
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
contamination rate ¢

contamination rate ¢ contamination rate ¢ contamination rate ¢

2000 2000

H,

—
(&)
o
o
—
[6)]
o
o

1000¢

N
o

5001 5001

average stopping time
average stopping time
=
o
o
average stopping time
N
o

L X %
0.2 0.3
contamination rate €

® ® : ® ® - - :
0.2 0.3 0 0.1 0.2 0.3 0 0.1
contamination rate € contamination rate ¢

I s a I
0 0.1 0.2 0.3 0 0.1
contamination rate €

Related Work

[1] M. R. Leonard and A. M. Zoubir, “Robust distributed sequential hypothesis testing for detecting a random
signal in non-Gaussian noise,” in Proc. 25th European Signal Processing Conference (EUSIPCO), Aug 2017.

[2] W. Hou, M. R. Leonard, and A. M. Zoubir, “Robust distributed sequential detection via robust estimation,”
in Proc. 25th European Signal Processing Conference (EUSIPCO), Aug 2017.

[3] M. R. Leonard and A. M. Zoubir, “Robust sequential detection in distributed sensor networks,” IEEE
Trans. Signal Proc., Feb 2018, submitted. [Online]. Available: https://arxiv.org/abs/1802.00263

[4] M. Fauld and A. M. Zoubir, “Old bands, new tracks — Revisiting the band model for robust hypothesis
testing,” IEEE Trans. Signal Proc., vol. 64, no. 22, pp. 5875-5886, Nov 2016.




