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Introduction

• Sequential detectors can significantly reduce the average number of samples compared

to fixed sample size tests with the same reliability.

• Sequential detectors for multiple hypotheses can solve non-binary decision problems.

• Fully distributed methods exploit the inherent scalability, fault-tolerance, and absence

of a single point of failure in sensor networks.

• Distributional uncertainties in real-world applications call for robust solutions.

Contributions

• We propose the Consensus + Innovations Matrix Sequential Probability Ratio Test

(CIMSPRT) as a sequential multiple hypothesis test for distributed sensor networks.

• We provide an accurate prediction of the average stopping time of the CIMSPRT.

• We robustify the CIMSPRT using least favorable densities (LFDs).

• We validate the performance of the CIMSPRT and the robust LFD-CIMSPRT in a shift-

in-variance test.

• We analyze the impact of network size and connectivity on the performance.

Problem Formulation

• Detect the presence of one out of M signals xm(t) with different variances σ2
m in a

non-Gaussian environment with a distributed sensor network.

⇒ Shift-in-variance test between M hypotheses under ε-contamination:

Hm : xm(t) ∼ N (0, σ2
m), pcont

m = (1− ε)p0m + εhm

hm : probability density function of the contaminating noise under Hm

N (0, σ2) : zero-mean normal distribution with variance σ2

pm, p
0
m, p

cont
m : true, nominal and contaminated probability density function under Hm

ε : contamination factor

The Consensus + Innovations Matrix SPRT (CIMSPRT)

• Calculation of the log-likelihood ratio of node k at time instant t and the corresponding

test statistic for the hypothesis pair Hm,Hn:

ηkmn(t) = log

(

pm(yk(t))

pn(yk(t))

)

Sk
mn(t) =

∑

l∈Nk

wklS
l
mn(t− 1) +

∑
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wklη
l
mn(t) (1)

Nk : open neighborhood of node k

wkl : coefficient for weighting the information of node l at node k

yk(t) : measurement of node k at time instant t

• Decision thresholds for the hypothesis pair Hm,Hn [1, 2, 3] :
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r : rate of information flow in the network

α, β : required probabilities of false alarm and misdetection

µη,m, σ
2
η,m : mean and variance of the log-likelihood ratio under Hm

• Acceptance test at each node with decision rule:

if ∃ m ∈ {1, . . . ,M} such that

Sk
mn(t) ≥ γu

mn ∀ n ∈ {1, . . . ,M} \ {m} : accept Hm

else : continue sampling,

The test is stopped and Hm is accepted as soon as all corresponding pairwise test statis-

tics have crossed the threshold.

• Expected stopping time of the CIMSPRT: slowest one-sided pairwise test

Em [T ] ≈ max
n=1,...,M

n6=m

log (γu
mn)

D(pm|pn)
. (3)

D(pm|pn) : Kullback-Leibler divergence between pm and pn

The Least-Favorable-Density-CIMSPRT (LFD-CIMSPRT)

Least Favorable Densities (LFDs)

• LFDs of Huber’s clipped likelihood ratio test for some cm, cn > 0 [4]

qm = max
{

cmp
0
n, (1− ε)p0m

}

qn = max
{

cnp
0
m, (1− ε)p0n

} (4)

Robustifying the CIMSPRT

• We replace the log-likelihood ratio in (1) by the clipped log-likelihood ratios of the LFDs

to obtain a robust test statistic:

ηk,clipped
mn (t) = log

(

qm(yk(t))

qn(yk(t))

)

(5)

Sample networks: randomly generated simple, connected and undirected graphs
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Results: Detecting the presence of one out ofM signals
Setup

• four networks of different size and connectivity

• M = 4 signals with variances σm ∈ {1, 2, 4, 16}

• measurement noise: hm = N (0, 81), ε ∈ [0, 0.3]

• probability of false alarm: αmn = 0.01

• 1 000 Monte-Carlo runs

CIMSPRT

• accurate prediction of the average stopping time

• higher variance leads to shorter testing time

• higher network connectivity drastically reduces average

stopping time ⇒ good scalability

• network size only marginally effects performance

LFD-CIMSPRT

• accurate detection results up to 10 % contamination

(20 % under H4) irrespective of network size and con-

nectivity

• network connectivity impacts average stopping time

CIMSPRT: Ratio of

correct detection
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CIMSPRT: Average

stopping time
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LFD-CIMSPRT: Ratio of correct detection and average stopping time
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α = 0.01

H1
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α = 0.01

H2
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α = 0.01

H3
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α = 0.01

H4
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